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Elasticity, shape fluctuations, and phase transitions in the new tubule phase
of anisotropic tethered membranes
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~Received 30 July 1997!

We study the shape, elasticity, and fluctuations of the recently predicted@L. Radzihovsky and J. Toner, Phys.
Rev. Lett.75, 4752~1995!# and subsequently observed~in numerical simulations! @M. Bowick, M. Falcioni,
and G. Thorleifsson, Phys. Rev. Lett.79, 885 ~1997!; tubule phase of anisotropic membranes, as well as the
phase transitions into and out of it. This novel phase lies between the previously predicted flat and crumpled
phases, both in temperature and in its physical properties: it is crumpled in one direction, and extended in the
other. Its shape and elastic properties are characterized by a radius of gyration exponentn and an anisotropy
exponentz. We derive scaling laws for the radius of gyrationRG(L' ,Ly) ~i.e., the average thickness! of the
tubule about a spontaneously selected straight axis and for the tubule undulationshrms(L' ,Ly) transverse to its
average extension. We show that for square membranes~with intrinsic size L'5Ly5L), RG}Ln, andhrms

}L12hkz/2, with hk a bending rigidity anomalous elasticity exponent related ton and z. For phantom~i.e.,
non-self-avoiding! membranes, we predictn5

1
4, z5

1
2, andhk50, exactly, in excellent agreement with simu-

lations. ForD52 dimensional membranes embedded in the space of dimensiond,11, self-avoidance greatly
swells the tubule and suppresses its wild transverse undulations, changing its shape exponentsn, z, andhk .
For aD-dimensional membrane embedded ind.d* @d* (D52). 7

2#, hk50 andz5(D2112n)/3, while for
d,d* , hk.0 and z5(D2112n)/(32hk). ‘‘Flory’’ theory yields, in the physical case ofD52 and d
53, n53/4, while the recent 112e expansion results yieldn50.52. The actual value ofn probably lies closer
to the Flory estimate, between these two limits. We give detailed scaling results for the shape of the tubule of
an arbitrary aspect ratio, i.e., for the tubule thickness, its transverse undulations, and a variety of other
correlation functions, as well as for the anomalous elasticity of the tubules, in terms ofn andz. Finally we
present a scaling theory for the shape and specific heat near the continuous transitions into and out of the tubule
phase, and perform detailed renormalization group calculations for the crumpled-to-tubule transition for phan-
tom membranes.@S1063-651X~98!05301-X#

PACS number~s!: 82.65.Dp, 64.60.Fr, 05.40.1j
-

m
fla
e
a
u

he
n-
y

t
de
d
er

o
er

-

y,
o a
an

‘tu-
m-
he
in

er

the
be
rm
s
(
es,

es
an-
lly
I. INTRODUCTION

Tethered membranes@1–4# became a subject of great in
terest when it was theoretically predicted@5# that, unlike
polymers, which are always orientationally disordered, me
branes can exhibit two distinct phases: crumpled and
with a ‘‘crumpling’’ transition between them. The flat phas
is particularly novel and intriguing, because it provides
example of a two-dimensional system with a continuo
symmetry that nonetheless exhibits a long-ranged order~spe-
cifically, long-ranged orientational order in the normal to t
membrane! in apparent violation of the Hohenberg-Mermi
Wagner theorem@6#. This ordering is made possible b
‘‘anomalous elasticity’’ @5,7,8#: thermal fluctuations infi-
nitely enhance the bending rigidityk of the membrane a
long wavelengths, thereby stabilizing the orientational or
against these very fluctuations. This is perhaps the most
matic illustration yet found of the phenomenon of ‘‘ord
from disorder.’’

Rich as these phenomena are, most past theoretical w
@4# was restricted toisotropic membranes. In a recent pap
@1#, we extended these considerations tointrinsically aniso-
tropic membranes~e.g., polymerized membranes with in
571063-651X/98/57~2!/1832~32!/$15.00
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plane tilt order@9#! and found, astonishingly, that anisotrop
a seemingly innocuous generalization, actually leads t
wealth of new phenomena. Most dramatically, we found
entire new phase of membranes, which we called the ‘
bule’’ phase, ubiquitously intervenes between the high te
perature crumpled and low temperature ‘‘flat’’ phases. T
defining property of the tubule phase is that it is crumpled
one of the two membrane directions, but ‘‘flat’’~i.e., ex-
tended! in the other. Its average shape is a long, thin cylind
of lengthRy5Ly3O(1) and radiusRG(L')!L' , whereLy

andL' are the dimensions the membrane would have in
extended and crumpled directions, respectively, were it to
flattened out. It should be clarified here that we use the te
‘‘cylinder’’ extremelyloosely; as illustrated in Fig. 2, a cros
section of the membrane perpendicular to the tubule axisy)
will look as disordered as a flexible polymer. These tubul
occurring as a low temperature phase of anisotropicpolymer-
izedmembranes, have little in common~and therefore should
not be confused! with microtubules that are found inliquid
phospholipid membranes@10#.

Only in the special case of perfectly isotropic membran
@11# is it possible for the membrane to undergo a direct tr
sition from the flat to the crumpled phase. The theoretica
1832 © 1998 The American Physical Society
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57 1833ELASTICITY, SHAPE FLUCTUATIONS, AND PHASE . . .
predicted @1# and recently observed@2# phase diagram is
shown in Fig. 1.

The direct crumpling transition studied previously occu
in our more generic model only for that special set of c
through the phase diagram~like P 2) that pass through the
origin. Generic paths~like P1) will experiencetwo phase
transitions, crumpled-to-tubule, and tubule-to-flat, that are
new, heretofore uninvestigated universality classes.

This prediction was recently dramatically confirmed
Monte Carlo simulations of phantom~i.e., non-self-avoiding!
membranes by Bowick, Falcioni, and Thorleifsson~BFT!
@2#. They simulated membranes with different bare bend
moduli kx and ky in the orthogonalx and y directions. As
temperature~or one of the bending rigidities, e.g.,kx) is
varied, we predicted our model would follow a generic pa
like P 1 in Fig. 1. And, indeed, these simulations@2# ob-
served two specific heat bumps, corresponding to two
tinct continuous transitions crumpled-to-tubule and tubu
to-flat ~rounded by finite membrane size!, just as we
predicted@1#. Furthermore, the shape of the membrane in
phase between these two transitions was exactly that of
tubule above~see Fig. 2!, and had, within numerical errors
precisely the scaling properties and exponents that we
dicted for phantom tubules@1#. Here we present our detaile
study of these transitions and the tubule phase, in the p
ence of both thermal fluctuations and self-avoidance.

There are a number of possible experimental realizati
of anisotropic membranes. One is polymerized membra
with in-plane tilt order@9#. Fluid membranes with such orde
have already been found@12,13#; it should be possible to
polymerize these without destroying the tilt order. Seco
membranes could be fabricated by cross-linking DNA m
ecules trapped in a fluid membrane@12,13#. Performing the
cross-linking in an applied electric field would align th
DNA and ‘‘freeze in’’ the anisotropy induced by the electr
field, which could then be removed.

The tubule cross-sectional radiusRG ~hereafter called the
radius of gyration!, and its undulationshrms transverse to its

FIG. 1. Phase diagram for anisotropic tethered membra
showing the tubule and previously studied flat and crumpled pha
s

n

g

s-
-

e
he

e-

s-

s
es

,
-

average axis of orientation, obey the scaling laws

RG~L' ,Ly!5L'
n SR~Ly /L'

z !, ~1.1!

hrms~L' ,Ly!5Ly
zSh~Ly /L'

z !, ~1.2!

wherez5n/z,

z5
1

32hk
~112n!, ~1.3!

we have specialized in Eq.~1.3! to D52 ~with a general
expression for aD-dimensional membrane given in the ma
text!, the universal exponentsn and z are ,1, hk is the
anomalous elasticity exponent for the tubule bending rigid
k ~as defined byk;Ly

hk ; also see below!, and for conve-
nience we chose to measure the intrinsic lengthsLy andL'

in units of the ultraviolet cutoff, set approximately by th
monomer~e.g., phospholipid! size.

The scaling functionsSR,h(x) have the limiting forms

SR~x!}H xz2np /z for x→0

const for x→` ,
~1.4!

Sh~x!}H const for x→0

x3/2 2z for x→` ,
~1.5!

wherenp is the radius of gyration exponent of a coiled line
polymer' 3

5. These scaling functions areuniversal~i.e., in-
dependent of material parameters and temperature!, up to an
overall nonuniversal multiplicative factor, which can, an
will, depend on material parameters and temperature.

The scaling forms, Eqs.~1.4! and ~1.5!, imply that for a
‘‘roughly square’’ membrane—that is, one wit
L';Ly[L—in the limit L→`

RG~L';Ly[L !}Ln, ~1.6!

hrms~L';Ly[L !}L12hkz/2, ~1.7!

where we have used the fact that, forLy;L' , the argument
x[Ly /L'

z of the scaling functionsSR,h(x) goes to infinity as
L→`, and used Eq.~1.3! to simplify Eq. ~1.7!.

Detailed renormalization group calculations show thathk
is strictly positive. Hencehrms!L for a roughly square mem
brane asL→`. Thus the end-to-end orientational fluctu
tions u;hrms/L}L2hkz/2→0 as L→` for such a roughly
square membrane, proving that tubule order~which requires

es
s.

FIG. 2. Schematic picture of the tubule phase of anisotro
polymerized membrane, with the definition of its thicknessRG and
roughnesshrms, our predictions for which are given in Eqs.~1.1!
and ~1.2!.
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1834 57LEO RADZIHOVSKY AND JOHN TONER
orientational persistence in the extended direction! is stable
against undulations of the tubule embedded ind53 dimen-
sions.

On the other hand, in the limitLy@L' , in which the
tubule looks more and more like a linear polymer~a ribbon
of width L' and lengthLy), we find

hrms}
Ly

3/2

L'
z~3/22z!

5
Ly

3/2

L
'

1/21hkz/2[LyS Ly

LP~L'! D
1/2

, ~1.8!

acting like a rigid polymer with apolymer-bending rigidity

kp~L'!}L
'

11zhk . ~1.9!

It is well known @14#, of course, that a linear polyme
doesnot have long-ranged orientational order, i.e., it has
finite orientational persistence lengthLP . For length smaller
thanLP(L') we recover the well-known@14# Ly

3/2 growth of
transverse fluctuations. By equatinghrms from Eq. ~1.8! with
the lengthLy of the tubule, and defining~ribbon width-
dependent persistent length! LP(L') to be the value ofLy at
which this equality occurs, we obtain an estimate for
orientational persistence lengthLP of a long, skinny tubule:

LP~L'!}L
'

11hkz . ~1.10!

We see that onlyvery long, skinny membranes (Ly
@L') will be orientationally disordered; for any membran
with a reasonable aspect ratio~i.e., Ly;L'), Ly is much less
than LP(L'), and the orientational order of the tubule pe
sists throughout it. This proves that the tubule phase is st
in the thermodynamic limit against thermal fluctuations.

Equation~1.9! indicates that the effective polymer ben
moduluskp(L') is ‘‘anomalous,’’ by which we mean the
fact that kp(L'), grows as a power ofL' greater~by the
‘‘anomalous dimension’’hkz) than 1 ~naively expected
based on dimensional analysis!. This, together with the con
comitant anomalous dimension of the persistent len
LP(L'), Eq. ~1.10!, embodies the phenomenon known
‘‘anomalous elasticity’’@15,5,7,8#. In addition to fluctuating
membranes, they have consequences for polymers whos
ternal structure is that of a long ribbon of dimensionL'

3Ly , with Ly@LP(L')@L' . Provided thatL' is large
enough that the anomalous elasticity can manifest itself,
radius of gyrationRG

p of this polymer ~which, sinceLy

@LP , will be coiled! will, in fact, grow more rapidly with
the transversedimensionL' of the polymer than the conven
tional elastic theory would predict. Specifically, we expec

RG
p 'LP~L'!S Ly

LP~L'! D
np

,
~1.11!

}Ly
npL

'

~12np!~11hkz! ,

while conventional elastic theory would implyRG
p }L

'

12np .
In addition to this anomalous elasticity in the effecti

polymer bend modulus, the fluctuating tubule also displ
anomalous elasticity for stretching the tubule. In particu
experiments that attempt to measure the stretching mod
gy of the tubule@defined more precisely by the renormaliz
a
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le

h

in-

e

s
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us

version of Eqs.~5.5! and~5.7!# at wave vectorq will produce
results that depend strongly onq, even in the limitq→0. In
particular, this apparent wave-vector-dependent stretch
modulusgy(q) vanishesas uqu→0, according to the scaling
law

gy~q!5qy
huSg~qy /q'

z !, ~1.12!

wherehu.0 is another universal exponent, andSg(x) an-
other universal scaling function.

Similarly, the tubule bend modulusk @also defined more
precisely by the renormalized version of Eqs.~5.4! and~5.6!#
becomes strongly wave vector dependent asq→0, but it
divergesin that limit,

k~q!5qy
2hkSk~qy /q'

z !, ~1.13!

with hk>0 yet another universal exponent, andSk(x) yet
another universal scaling function.

Relations Eqs.~1.1! and~1.2! summarize all of the scaling
properties in terms of the two universal exponentsn and z
~or, equivalently,hk). Clearly, we would like to predict their
numerical values. There are three distinct cases to be con
ered, as we decrease the embedding dimensiond in which
the D52-dimensional membrane fluctuates, as illustrated
Fig. 3 ~the generalization to arbitraryD is given in the main
text!.

Regime I

For a phantom membrane, or for a membrane with intr
sic dimensionD52 embedded in a space of dimensiond
>duc511, self-avoidance effects can be asymptotically
nored in the tubule phase, and we predict@1#

n5 1
4 , ~1.14!

z5 1
2 , ~1.15!

hk50, ~1.16!

hu51. ~1.17!

Regime II

For a self-avoiding membrane withd* ,d,duc511
~with d* . 7

2), we have shown~as we describe in detail in
Sec. VI! that the bending elasticity isnot anomalous, i.e.,
hk50, as guaranteed by anexact‘‘tubule-gauge’’ symmetry
~see Sec. VI B!. This, using Eq.~1.3!, immediately leads to

FIG. 3. Illustration~in D52) of the three regimes of embeddin
dimensiond with qualitatively and quantitatively different tubul
shape scaling properties. Our estimates ofd* '6.5 place the physi-
cal tubule (d53) deep in regime III; the strict boundd* .

7
2 guar-

anteesthis.
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57 1835ELASTICITY, SHAPE FLUCTUATIONS, AND PHASE . . .
the exponent relationz5(112n)/3, which states that, fo
d.d* , all properties of a self-avoiding tubule can be e
pressed in terms of a single radius of gyration exponentn. In
this ranged* ,d,duc511 of embedding dimensionality, th
exponentsn andz can be computed in ane5112d expan-
sion. This has been done recently by Bowick and Gui
~BG! @3#, who verified the validity of the Ward identityz
5(112n)/3 ~for D52) perturbatively, to all orders ine.
Furthermore, forall embedding dimensionsd.d* , the ab-
sence of anomalous bend elasticity~i.e., hk50) renders the
self-avoiding interaction ineffective in stabilizing wild tran
verse tubule undulations and for square membranes,
~1.7! and ~1.10! show that the (D52)-dimensional phase i
only marginally stable. ForD52, this d* ,d,duc511 re-
gime has

2
5 .n. 1

4 , ~1.18!

z5 1
3 ~112n!, ~1.19!

hk50, ~1.20!

hu532
1

z
. ~1.21!

Regime III

Finally, as we describe in Sec. VI, the physics of t
physicaltubule ~i.e., D52-dimensional tubule embedded
d53 dimensions! is much richer than that for the embeddin
dimensionsd.d* , where ‘‘tubule-gauge’’ symmetry im-
poses strictnonrenormalization of the tubule bending rigidit
k. For d,d* , because of the presence of additional elas
nonlinearities~which are irrelevant ford nearduc511, but
become strongly relevant for physical dimensionalityd
,d* ), this e expansion aboutd5duc511 gives no informa-
tion about the simultaneous role that the self-avoidance
elastic nonlinearity play in the physical tubule@D52, d
53,d* (D52)], where they areboth important. We find
that, as the embedding dimensiond is lowered belowd*
,duc511 @d* (D52). 7

2#, the nonlinear elasticity become
relevant, destabilizing the fixed point studied in Ref.@3#, and
leading to the breakdown of thez5(112n)/3 relation~with
the amount of breakdown described by a new anoma
elasticity exponenthk). Hence physical tubules (D52, d
53) are described by a new infrared stable fixed point, t
is nonperturbative ine5112d, which incorporates the si
multaneous effects of self-avoidance and nonlinear ano
lous elasticity. This new fixed point characterizes thed
,d* regime ~appropriate to a physical tubule! with shape
scaling exponents

n> 2
5 , ~1.22!

n.
1

d21
, ~1.23!

z5
1

32hk
~112n!, ~1.24!
-

r

s.

c

nd

s

t

a-

2hk1hu532
1

z
, ~1.25!

hk ,hu.0. ~1.26!

We cannot calculate exactly the critical embedding dim
sion d* (D) that separates regimes II and III, but wecan
derive a rigorous lower bound on itd* (2). 7

2. Thus the
physical tubule,D52, d53 falls in regime III. Our best
estimate ofd* (2) is that it lies between 5 and 7.

It should be emphasized that all of the exponents areuni-
versal in a given embedding dimensiond. Indeed, ford*
,d,11, whereall of the exponents are determined by t
single unknown exponentn, there are two different analyti
cal approximations ton that agree to better than 1% ford
.8, and to better than 10% ford’s greater than the likely
values ofd* . These analytical methods are Flory theory@1#,
which predicts

nF5
3

d11
, ~1.27!

and the leading order ine5112d expansion of Bowick and
Guitter @3#, which gives

ne5
3

42ce
2

1

2
, ~1.28!

with

c50.131 25. ~1.29!

We suspect, based on the experience of comparing poly
exponents obtained from Flory theory with those obtain
from the e expansion, that, although BG’s results are c
tainly more accurate neard511, when the BG and Flory
results start to disagree appreciably~i.e., belowd57), the
Flory result is probably the more accurate. Nonetheless,
extremelyclose agreement between these two very differ
approaches in these high embedding dimensions incre
our faith in both of them.

In fact, as we describe in detail in Sec. VI B, for theD
52-dimensional membrane,d* is determined by the condi
tion that n(d)→ 2

5 as d→d
*
1 . Using the Flory result@Eq.

~1.27!#, this givesd* 5 13
2 56.5; while using the BG resul

@Eq. ~1.28!# givesd* 51122/(3c)55.92.
All of the exponents jump discontinuously~as a function

of d) at d* ; Fig. 9 shows such a plot, schematically, f
n(d) andhk(d).

For a physical tubule, Flory theory, Eq.~1.27! implies

nF~D52,d53!5 3
4, ~1.30!

in contrast to the BG result Eq.~1.28!, which impliesne(D
52,d53)50.517. What is the correct value ofn in d53?
As discussed above, our experience with polymers sugg
that Flory theory is more reliable@16# than thee expansion
when both are pushed well below the upper critical dime
sion. One might be concerned that this ceases to be true
tubules, due to the discontinuous behavior of all of the
ponents atd* , but we will present arguments later that su
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1836 57LEO RADZIHOVSKY AND JOHN TONER
gest that this is not the case, and that Flory theory is proba
quite accurate in the physical case ofd53.

It is widely @17,18#, though not universally@19,20#, be-
lieved that self-avoidance destroys the crumpled phase. W
is definitely known is that the crumpled phase has only b
seen in simulations of phantom membranes and in more
cent simulations by Baumgartner@19# of a self-avoiding
plaquette membrane model. It is therefore reasonable to
whether our tubule phase will suffer the same fate. We th
not, for the following reasons.

~1! It is clear that self-avoidance, though a relevant p
turbation~in physical embedding dimensiond,duc511) has
far less effect on the tubule than the crumpled phase, s
points on the membrane widely separated in they direction
never bump into each other in the tubule phase, but do in
crumpled phase.

~2! Theanalyticargument that self-avoidance destroys t
crumpled phase is based on the Gaussian variational~GV!
approximation@21,22#, which predicts that the radius of gy
ration exponentnGV

crumpled54/d, which implies thatn>1 for
d<4, and hence that the membrane is extended~i.e., flat! for
those dimensions~which, of course, include the physica
case ofd53). We find that the same Gaussian variation
approximation leads to the same conclusion for the tub
phase. Our result forD52 is

nGV
tubule5

7

3d25
, ~1.31!

and impliesnGV
tubule>1 for d<4, and hence an instability o

the self-avoiding tubule to an extended~i.e. flat! membrane
in physical dimensions.

We are not, however, overly concerned by this result,
a number of reasons.

~a! The Gaussian variational approximation is known
be far from trustworthy. For example, it predictsn52/d for
linear polymers, which not only is less accurate forall d
between 1 and 4 than the Flory resultn53/(d12), but also
incorrectly predicts that the lower critical dimensiondlc be-
low which linear polymers are always extended isdlc52,
whereas, in fact, it is known exactly thatdlc51, a result that
is also predicted exactly by the Flory theory. Thus, t
Gaussian variational approximation isveryunreliable in pre-
dicting the lower critical dimension of a crumpled object.

~b! There is a good reason to believe it is equally unre
able for our problem as well. If we compare the Flory pr
diction for n with the e-expansion calculation of Ref.@3#
~which is asymptotically exact ind→11), in, e.g.,d58, we
find they differ less than 1/3 of 1%:ne50.332 @3#, nFlory

5 1
3 @1#; while the Gaussian variational resultnGV

tubule5 7
19

50.3684 is nearly 40 times as far offne as the Flory result.
This strongly suggests that both Flory theory and thee ex-
pansion are more reliable than the Gaussian variational
proximation, and both of them predictn substantially,1 in
d53: nF5 3

4 @1# andne50.517@3#.
~c! Finally, on more general grounds, while the Gauss

variational method can be quite useful, only some of its
sults can be trusted. Certainly it is likely that thetrendsof,
e.g., exponents with dimensionalityd and D, are captured
correctly by this theory. The very existence of the crump
phase relies on the precise value ofn(d) @it disappears ifd
ly

at
n
e-

sk
k

-

ce

e

l
le

r

-
-

p-

n
-

d

,dlc , with dlc defined byn(dlc)51]. However, as with any
approximate method, especially with uncontrolled appro
mations such as the Gaussian method, there is little cred
ity in the actualvaluesof the exponents. Furthermore, th
Gaussian variational approximation is very closely related
a large expansion in 1/d about the embedding dimensiond
→` limit @23#. It is therefore intrinsically untrustworthy an
ad hoc for small values ofd at which one is assessing th
stability of the tubule~or crumpled! phase, which very deli-
cately and sensitively depends on the precise value ofn at
small d.

In the remainder of this paper we present the details
our calculations. In Sec. II we introduce the Landa
Ginzburg-Wilson free energy for our generalized model
anisotropic polymerized membranes. In Sec. III we will fir
solve this model in mean field theory. From this solution w
obtain the phase diagram for anisotropic polymerized me
branes, and identify and characterize the new tubule phas
well as the previously studied crumpled and flat phases
Sec. IV we show that the scaling properties of the flat a
crumpled phases are unaffected by the anisotropy. In Sec
and VI we then consider the effects of both thermal fluctu
tions and self-avoidance on the tubule phase. We treat
problem using Flory theory, renormalization group, a
Gaussian variational methods. We calculate the upper crit
embedding and intrinsic dimensions for both effects, a
thereby show that both are relevant for the physical cas
two-dimensional membranes embedded in three dimensi
We also show that, although there isno anomalous elasticity
for the bend modulusk along the tubule neard5duc511
~due to aforementioned ‘‘tubule gauge’’ symmetry!, such
anomaly must set in for embedding dimensionsd,d* , with
d* . 7

2. When this happens, the fixed point~perturbative
around d511) @3# which describes a self-avoiding~bend
elastically nonanomalous! tubule, becomes unstable, and
new fixed point controls the tubule phase. We derive n
exact relations, Eqs.~6.62! and ~6.63!, betweenn and z,
which involve anomalous elasticity exponenthk ~or hu , re-
lated to it! and are appropriate for a physical~with anhar-
monic elasticity! tubule, described by this new fixed poin
We then use the Flory @1# and extrapolated
e5112d-expansion@3# results forn in this relation to de-
terminez and all other tubule shape exponents in terms
two constants that, unfortunately, we were not able to co
pute accurately. In Sec. V we also derive the scaling res
Eqs.~1.1! and~1.2! for RG andhrms, and for the anomalous
elastic theory as well.

In Sec. VII we use the renormalization group to analy
the crumpled-to-tubule transition. We then construct a sc
ing theory of the crumpled-to-tubule and tubule-to-flat tra
sitions, and compute within Flory theory the critical exp
nents for these transitions. In Sec. VIII we summariz
conclude, and make some suggestions for further anal
numerical, and experimental work.

II. MODEL

Our model for anisotropic membranes is a generalizat
of the isotropic model considered in Ref.@24#. As there, we
characterize the configuration of the membrane by giving
positionrW(x), in thed-dimensional embedding space, of th
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57 1837ELASTICITY, SHAPE FLUCTUATIONS, AND PHASE . . .
point in the membrane labeled by aD-dimensional internal
coordinatex. In the physical case,d53 andD52, of course.
Throughout the remainder of this paper, we will distingui
between D-dimensional ‘‘intrinsic’’ vectors and
d-dimensional ‘‘extrinsic’’ vectors by using boldface typ
for the former, and vector arrows over the latter.

We now construct the Landau-Ginzburg-Wilson free e
ergy F for this system, by expandingF to leading order in
powers of rW(x) and its gradients with respect to intern
spacex, keeping only those terms consistent with the sy
metries of the problem. These symmetries are global tra
lation invariancerW(x)→rW(x)1rWo , and global rotational in-

variancerW(x)→MWW •rW(x), whererWo andMWW are a constant~i.e.,
x independent! vector and a constant rotation matrix, respe
tively. Global translational invariance requires thatF be ex-
panded only in powers ofgradientswith respect tox. We
will furthermore take the membrane to be isotropic in t
D21 membrane directions~hereafter denoted byx') or-
thogonal to one special direction~which we cally). Since the
physical case isD52, this specialization is innocuous.

The most general model consistent with all of these sy
metries, neglecting irrelevant terms, is

F@rW~x!#5 1
2 E dD21x'dyFk'~]'

2 rW !21ky~]y
2rW !2

1k'y]y
2rW•]'

2 rW1t'~]a
'rW !21ty~]yrW !2

1
u''

2
~]a

'rW•]b
'rW !21

uyy

2
~]yrW•]yrW !2

1u'y~]a
'rW•]yrW !21

v''

2
~]a

'rW•]a
'rW !2

1v'y~]a
'rW !2~]yrW !2G

1
b

2E dDxE dDx8d~d!@rW~x!2rW~x8!#, ~2.1!

where thek ’s, t ’s, u’s, andv ’s are elastic constants. The fir
three terms inF ~thek terms! represent the anisotropic ben
ing energy of the membrane. The elastic constantst' and ty
are the most strongly temperature-dependent paramete
the model, changing sign from large, positive values at h
temperatures to negative values at low temperatures. T
positivity at high temperatures reflects the membrane’s
tropic preference for crumpling. To see this, note that t
crumpled state is one in which all the particles in the me
brane attempt to cram themselves into the same pointrW; in
this state, the gradients with respect to the internal space]a

'rW

and]yrW seek to minimize themselves, which is clearly favo
able whent' ,ty.0. However, when either of these becom
negative, it becomes favorable for the membrane to fla
~i.e., extend! in the associated direction, as we shall show
a moment. Theu andv quartic terms are higher order elast
constants needed to stabilize the membrane when one or
of the first order elastic constantst' ,ty become negative
Stability requires that
-

-
s-

-

-

in
h
eir
n-
s
-

-

n

oth

u''8 .0, ~2.2!

uyy.0, ~2.3!

and

v'y.2Au''8 uyy, ~2.4!

where

u''8 [v''1u'' /~D21!. ~2.5!

The final,b, term in Eq.~2.1! represents the self-avoidanc
of the membranes; i.e., its steric or excluded volume inter
tion. Equation~2.1! reduces to the model for isotropic mem
branes considered in Ref.@24# when t'5ty , k''5ky ,
k'y50, uyy54( ṽ 1u), u''5u'y54u, and v''5v'y

54 ṽ .

III. MEAN FIELD THEORY

We begin our analysis of this model by obtaining its me
field phase diagram, at first neglecting the self-avoidance
teraction. Later, we will consider both the effects of fluctu
tions and self-avoidance.

In mean field theory, we seek a configurationrW(x) that
minimizes the free energy Eq.~2.1! ~without the self-
avoidance term!. The curvature energiesk'(]'

2 rW)2 and

ky(]y
2rW)2 are clearly minimized whenrW(x) is linear inx. We

will therefore seek minima ofF of the form

rW~x!5~z'x' ,zyy,0,0, . . . ,0!. ~3.1!

Obviously, uniform rotationsrW(x)→MWW •rW(x), of any such

minimum, with MWW a constant rotation matrix, will also b
minima. A continuous degenerate set of minima is there
obtained, as usual for a system with a broken continu
symmetry. Uniform translations of the entire membrane
also allowed, of course.

Inserting Eq.~3.1! into Eq. ~2.1!, and for now neglecting
the self-avoidance term, we obtain the mean-field free ene
for anisotropic membranes

F5 1
2 L'

D21Ly@ tyzy
21t'~D21!z'

2 1 1
2 u''8 ~D21!2z'

4

1 1
2 uyyzy

41v'y~D21!z'
2 zy

2#, ~3.2!

whereL' and Ly are the linear dimensions of the flattene
membrane in the' andy directions, respectively.

This mean field theory is precisely that studied long a
by Fisher and co-workers@25# for a completely different
~magnetic! problem. Minimizing the free energy overz' and
zy yields two possible phase diagram topologies, depend
on whetheru''8 uyy.v'y

2 or u''8 uyy,v'y
2 .

For u''8 uyy.v'y
2 , we obtain the phase diagram in Fig.

Both z' and zy vanish for t' ,ty.0. This is the crumpled
phase: the entire membrane, in mean field theory, collap
into the origin,z'5zy50 i.e., rW(x)50 for all x.

In the regime between the positivet'-axis ~i.e., the locus
ty50 and t'.0) and the ty,0 part of the ty
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1838 57LEO RADZIHOVSKY AND JOHN TONER
5(uyy/v'y)t' line, lies our newy-tubule phase, characterize
by z'50 andzy5Autyu/uyy.0: the membrane is extende
in the y direction but crumpled in allD21 ' directions.

The'-tubule phase is the analogous phase with they and
' directions reversed,zy50 andz'5Aut'u/u''.0 ~obvi-
ously a symmetrical reversal for the physical case ofD
52), and lies between thet',0 segment of the linety

5(v'y /u''8 )t' and the positivety axis. Finally, the flat
phase, characterized by both

z'5@~ ut'uuyy2utyuv'y!/~u''8 uyy2v'y
2 !#1/2 . 0,

~3.3!

zy5@~ utyuu''2ut'uv'y!/~u''8 uyy2v'y
2 !#1/2 . 0,

~3.4!

lies between the t',0 segment of the line
ty5(uyy /v'y)t' and the ty,0 segment of the line
ty5(v'y /u''8 )t' .

For u''8 uyy,v'y
2 , the flat phase disappears, and is

placed by a direct first order transition from' tubule toy
tubule along the locusty5(v'y /u''8 )t' ~see Fig. 4!. The
boundaries between the tubule and the crumpled phase
main the positivety and t' axes, as foru''8 uyy.v'y

2 case.
Note that a direct crumpling transition~i.e., a direct tran-

sition between the crumpled and flat phases! is very nonge-
neric in this picture: only experimental loci that pass fro
ty ,t'.0 through the origin~locusP 2 in Fig. 1! can experi-
ence such a transition. This transition is, in fact, tetracriti
in this picture.

This does not, however, imply that direct crumpling tra
sitions are nongeneric. Many membranes will be perfec
isotropic, by virtue of being formed under conditions of u
broken rotational symmetry~e.g., randomly polymerized
membranes!. As discussed earlier, this set of membran
which is undoubtedly of finite measure, necessarily lies

FIG. 4. Phase diagram for tethered membranes showing
tubule phase, for the range of elastic parameters when the inte
diate flat phase disappears. A first-order phase transition sepa
y- and'-tubule phases.
-

re-

l

-
y

,
n

the special isotropic subspace of the full parameter spac
the model defined by Eq.~2.1! specified byt'5ty , k''

5ky , k'y50, uyy54( ṽ 1u), u''5u'y54u, and v''

5v'y54 ṽ . The values of the quartic couplings then satis
u''8 uyy.v'y

2 ~for u, ṽ .0), and hence the topology of th
phase diagram is Fig. 1. The boundaries of the flat phase
those isotropic values of the quartic couplings becomety

5t'@11u/ ṽ /(D21)# and ty5(11u/ ṽ )t' , respectively.
For u and v both positive ~as required by stability!, the
slopes of these lines are less than and greater than 1, re
tively; the isotropic locusty5t' therefore lies between th
two ~i.e., in the flat phase!, and hence, that modeldoesun-
dergo a direct flat to crumpled transition.

Membranes withany intrinsic broken orientational sym
metry ~e.g., in-plane tilt order@9#, which is quite common
@12#!, will generically havetyÞt' . Furthermore, they will
not generically have botht' and ty vanish at the same tem
perature. A generic locus through the phase diagram in Fi
will be like locus P 1, and will necessarily have one of th
tubule phases intervening between the flat and crump
phases. Our tubule phase is not only generically possible,
actually unavoidable, in membranes with any type or amo
of intrinsic anisotropy.

IV. FLUCTUATIONS AND SELF-AVOIDANCE
IN THE FLAT AND CRUMPLED PHASES

In this section, we show that both the flat and t
crumpled phases of anisotropic membranes are identica
their scaling properties, at sufficiently long length scales
the eponymous phases of isotropic membranes. Cons
first the flat phase. We can include fluctuations about
mean field solution by considering small deviations from t
solution in Eq.~3.1!,

rW~x!5@z'x'1u'~x!,zyy1uy~x!,hW ~x!#. ~4.1!

Inserting this into our initial free energy, Eq.~2.1!, with t'
and ty both in the range in which the flat phase is stable,
obtain the uniaxial elastic energy of Ref.@26#. As shown in
that reference, fluctuation effects in turn renormalize the
isotropic elastic energy into theisotropic membrane elastic
energy considered by Refs.@5,7,8#. In the flat phase, and a
sufficiently long scales, the anisotropic membranes there
behave exactly like isotropic membranes. This in particu
implies that the flat phase of anisotropic membranes is st
against thermal fluctuations. As in isotropic membranes,
is due to the fact that these very thermal fluctuations dr
the bend modulusk to infinity at long wavelengths@5,7,8#.

Specifically,k becomes wave vector dependent, andk(q…

diverges likeq2hk as q→0. In the flat phase the standar
Lamécoefficientsm andl @27# are also infinitely renormal-
ized and become wave vector dependent, vanishing in
q→0 limit asm(q);l(q);qhu; the values ofhk andhu in
the flat phase differ from those in the tubule phase, as d
their physical interpretation. The flat phase is furthermo
novel in that it is characterized by a universalnegativePois-
son ratio @7,28#, which, for D52, is defined as the long
wavelength limit q→0 of s5l(q)/@2m(q)1l(q)#. The
transverse undulations in the flat phase, i.e., the memb

ur
e-
tes



-

a

te
pi
f

te
-

ra

n

l

r
a

ai
tu
s
n

ll

n

a
ow

tu
,
fe
le

rd

q

is
see.
s

e
ple

-
l in
ar-
tion

-
a-

logy
ule

e

l
it.

les
eir
hat
nd
the

nt
al-

rt

e

57 1839ELASTICITY, SHAPE FLUCTUATIONS, AND PHASE . . .
roughnesshrms, scales with the internal size of the mem
brane ashrms;Lz, with z5(42D2hk)/2, exactly. Further-
more, an underlying rotational invariance imposes an ex
Ward identity betweenhk and hu , hu12hk542D, leav-
ing only a single nontrivial independent exponent charac
izing the properties of the flat phase of even anisotro
membranes. The best estimate forhk in the physical case o
a two-dimensional membrane (D52), embedded in a
d53-dimensional space comes from the self-consis
screening approximation~SCSA! of Le Doussal and Radzi
hovsky @28#, who foundhk54/(11A15)'0.82. The expo-
nent relations above then predicthu50.36 and z50.59.
These exponents, together with the negative Poisson
predictions of Le Doussal and Radzihovsky ofs52 1

3 @28#
have been recently spectacularly verified to high precisio
very large scale simulations~largest to date! by Falcioni
et al. @29#.

The root-mean-square ~rms! thermal fluctuation

^(n̂(x)2 ẑ)2&[^udnW (x)u2& of the local membrane norma
n̂(x) about its mean value~here taken to beẑ) is

^udnW ~x!u2&5^u“hW ~x!u2&,

5E dDq q2^uhW ~q!u2&,

}E dDq

k~q!q2 }E dDq

q22hk
,

}L22hk2D, ~4.2!

where we imposed an infrared cutoffq.L21, on the integral
over wave vectors,L being the smaller of the intrinsic linea
dimensionsL' ,Ly of the flattened membrane. These fluctu
tions are finite asL→`, when 22hk2D,0. In the physi-
cal caseD52, this condition is always satisfied sincehk
.0. Thus membrane orientational fluctuations rem
bounded, and the flat phase is stable against thermal fluc
tions, for the physical caseD52. Indeed, the SCSA predict
that they remain bounded down to the lower critical dime
sion D5A2 @28#.

Note that this stability of the flat phase depends crucia
on the anomalous elasticity, i.e., the divergence ofk(q) as
q→0. In the absence of this effect, which would correspo
to hk50, the integral over wave vector in Eq.~4.2! would
diverge logarithmically forD52, describing divergent ori-
entational fluctuations leading to an instability of the fl
phase at any nonzero temperature. Hence the flat phase
its stability to the anomalous elasticity~i.e., the fact that
hk.0). In contrast, as we shall show in a moment, the
bule phase is marginallystableagainst thermal fluctuations
even in the absence of anomalous elastic effects. Such ef
are, nonetheless, actually present for self-avoiding tubu
but they are not essential to the stability of the phase.

Because of this persistent long-ranged orientational o
~i.e., because the membrane is flat!, widely intrinsically sepa-
rated parts of the membranes~i.e., pointsx and x8, with
ux2x8u large! do not bump into each other@i.e., never have
rW(x)5rW(x8)]; hence the self-avoidance interaction in E
~2.1! is irrelevant in the flat phase.
ct

r-
c

nt

tio

in

-

n
a-

-

y

d

t
es

-

cts
s,

er

.

That the crumpled phase of anisotropic membranes
identical to that of isotropic membranes is even easier to
When botht' andty are positive, all of the other local term
in Eq. ~2.1!, i.e., thek, u, andv terms, are irrelevant at long
wavelengths~since they all involve more derivatives than th
t terms!. Once these irrelevant terms are neglected, a sim
change of variablesx'5x8At' /ty makes the remaining en
ergy isotropic. Thus the entire crumpled phase is identica
its scaling properties to that of isotropic membranes. In p
ticular, the membrane in this phase has a radius of gyra
RG(L) which scales with membrane linear dimensionL like
Ln, with n5(D12)/(d12) in Flory theory, and very simi-
lar values predicted bye-expansion techniques@30–32#.

V. FLUCTUATIONS IN PHANTOM TUBULES

In this section, we ignore self-avoidance~i.e., treat
‘‘phantom’’ membranes!, and consider the effects of fluctua
tions on phantom tubules. We will show that these fluctu
tions do not destroy the tubule phase, or change the topo
of the phase diagram. The detailed properties of the tub
phase are, however, modified by the fluctuations.

Let us consider they-tubule phase~i.e., the tubule phase
with the tubule axis along they axis!. To treat fluctuations,
we perturb around the mean field solutionrWo(x)5zy(y,0W ) by
writing

rW~x!5@zyy1u~x!,hW ~x!#, ~5.1!

where hW (x) is a d21-component vector orthogonal to th
tubule’s axis, which we take to be oriented along they axis.
The average extension factorzy is near but not exactly equa
to its mean field value, because fluctuations will change
Rather, we will choosezy so that all linear terms inhW (x) and
u(x) in the resultant elastic free energy for these variab
are exactly canceled, in the long wavelength limit, by th
fluctuation renormalizations. This criterion guarantees t
hW (x) andu(x) represent fluctuations around the true grou
state ofF. Precisely analogous choices have been used in
study of bulk smectic-A elasticity @15#, and the flat-phase
elasticity of isotropic membranes@5,7,8#.

Inserting the decomposition Eq.~5.1! into the free energy,
Eq. ~2.1!, neglecting irrelevant terms, and, for the mome
ignoring the self-avoidance interaction, gives, after some
gebra, the elastic free energyF tot5Fmft1Fel , whereFmft is
simply the mean-field free energy for the tubule phase,

Fmft5
1
2 L'

D21Ly@ tyzy
21 1

4 uyyzy
4#, ~5.2!

andFel@u(x),hW (x)# is the fluctuating elastic free energy pa

Fel5
1
2 E dD21x'dy$g@]yu1 1

2 ~]yhW !21 1
2 ~]yu!2#

1k~]y
2hW !21t~]a

'hW !21g'~]a
'u!2

1gy@]yu1 1
2 ~]yhW !21 1

2 ~]yu!2#2%, ~5.3!

where k[ky , t[t'1v'yzy
2 , gy[uyyzy

2/2, g'[t1u'yzy
2 ,

andg5ty1uyyzy
2 are constant coefficients. Note first that th

coefficientg of the linear terms inFel is also the coefficient
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1840 57LEO RADZIHOVSKY AND JOHN TONER
of the (]yhW )2 term. This is a consequence of the rotati
invariance of the original free energy, Eq.~2.1!, which leads
to the existence of the Goldstone mode]yhW . The combina-
tion E(u,hW )[]yu1 1

2 (]yhW )21 1
2 (]yu)2 is the only combina-

tion of first y derivatives ofu andhW that is invariant under
global rotations of the tubule. It is analogous to the no
linear strain tensor of conventional elasticity theory@27#. On
these general symmetry grounds, therefore, the free en
can only depend on]yu and]yhW through powers ofE(u,hW ),
and this property must be preserved upon renormalizat
This has two important consequences: the first is that, si
as discussed earlier, the coefficient of this linear term will
chosen to vanish upon renormalization via a judicious cho
of the stretching factorzy , the coefficient of (]yhW )2 will
likewise vanish@33#. This means that they direction be-
comes a ‘‘soft’’ direction for fluctuations ofhW in the tubule
phase. We can trace this softness back to the spontane
broken rotational symmetry of the tubule state. It is precis
analogous to the softness of height fluctuations in the
phase of isotropic membranes, manifested by the absen
(]xhW )2,(]yhW )2 terms in the elastic free energy of the fl
phase, analogous to Eq.~5.3! ~wheng is tuned to 0).

The second important consequence is that the ratios o
coefficients of the quadratic (]yu)2 and the anharmonic
]yu(]yhW )2 and (]yhW )4 terms inFel must always beexactly
4:4:1,since they must appear together as a result of expa

ing @]yu1 1
2 (]yhW )21 1

2 (]yu)2#2. We will show in a few mo-
ments that, for this special value of these ratios, the lo
wavelength anomalous elastic behavior of the ‘‘phantom
tubule phase can be calculatedexactly.

Recognizing thatg vanishes after renormalization, we ca
now calculate the propagators~i.e., the harmonic approxima
tion to the Fourier transformed correlation functions! by set-
ting g50 in Eq. ~5.3!. We thereby obtain

^hi~q!hj~2q!&5kBTd i j
'Gh~q!, ~5.4!

^u~q!u~2q!&5kBTGu~q!, ~5.5!

where

Gh
21~q!5tq'

2 1kqy
4 , ~5.6!

Gu
21~q!5g'q'

2 1gyqy
2 , ~5.7!

andd i j
' is a Kronecker delta when both indicesi and j Þy,

and is zero if eitheri or j 5y.
Inspection of the propagatorsGh andGu reveals that the

hW fluctuations are much larger than theu fluctuations for
uq'u'qy

2 , and that it is precisely this regime of wave vecto
that dominates the fluctuations. Thus, in power counting
determine the relevance or irrelevance of various operat
we must count each power ofuq'u astwo powers ofqy . It is
this power counting that leads to the identification of t
terms explicitly displayed in Eq.~5.3! as the most relevan
ones.

Calculating the root-mean-squared real space positio
fluctuations^uhW (x)u2& in the harmonic approximation by in
tegrating the propagators over all wave vectors, we find
-
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^uhW ~x!u2& }E
q'.L'

21

dD21q'dqy

~2p!D

1

tq'
2 1kqy

4 ,

}E
q'.L'

21

dD21q'

q'
3/2

} L'
5/22D , ~5.8!

where we have introduced an infrared cutoffuq'u.L'
21 in

the last integral. This expression clearly reveals that
‘‘phantom’’ tubules, the upper critical dimensionDuc for this
problem, below which transverse positional fluctuations
verge isDuc5

5
2; this in principle~but see discussion of domi

nant zero modes in Sec. VI B! allows a quantitatively trust-
worthy e5Duc225 1

2 expansion for the physical membran
of D52. This should be contrasted with the resultDuc54
for the analogous critical dimension in the flat phase@7,8#.

The lower critical dimensionD lc below which the tubule
is necessarily crumpled in this problem is also lowered
the anisotropy. Considering the fluctuations of the membr
normals¹hW in the harmonic approximation, one sees imm
diately that the largest of these is the fluctuation in they
direction,

^udny~x!u2&5^u]yhW ~x!u2&,

}E
q'.L'

21

dD21q'dqy

~2p!D

qy
2

tq'
2 1kqy

4 ,

}E
q'.L'

21

dD21q'

q'
1/2

} L'
3/22D , ~5.9!

which clearly only diverges in the infraredL'→` limit for
D<D lc5

3
2 ~but again, see the discussions of dominant z

modes in Sec. VI B!.
In the argot of the membrane field, the elasticity of pha

tom tubules is anomalous. In contrast to the flat phase, h
ever, for phantom tubules, the exponents characterizing
anomalous elasticity can be calculatedexactly. To see this,
we first note that theu fluctuations go like 1/q2 in all direc-
tions and hence are negligible~in the relevant wave vecto
regime uq'u'qy

2) relative to thehW fluctuations which scale
like 1/q4 in this regime. This justifies neglecting the1

2 (]yu)2

piece of the invariantE(u,hW ) operator. This also emerge
from a full renormalization group treatment@33#, which
shows that this term is strongly irrelevant. Once it is n
glected, the elastic free energy is quadratic inu, and these
phonon modes can therefore be integrated exactly out of
partition function

Z5E DuDhW e2bFel@u,hW #. ~5.10!

Once this is done, the only remaining anharmonic term in
effective elastic free energy forhW is, in Fourier space,

Fanh@hW #5 1
4 E

k1 ,k3 ,k3

@hW ~k1!•hW ~k2!#@hW ~k3!•hW ~k4!#

3ky1ky2ky3ky4Vh~q!, ~5.11!
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whereq5kW11kW2 andkW11kW21kW31kW450. The effective ver-
tex Vh(q) above reduces to

Vh~q!5
gyg'q'

2

gyqy
21g'q'

2 , ~5.12!

which is irrelevant near the Gaussian fixed point~but see
Sec. VI B!, as can be seen by the simpleanisotropicpower
counting described above.

The exact cancellation of the relevant terms inFanh@hW #
above is a direct consequence of the4:4:1 ratios of the
coefficients of the quadratic (]yu)2 and the anharmonic
]yu(]yhW )2 and (]yhW )4 terms inFel that were discussed ea
lier. Given this cancellation,Fanh@hW # is now clearly less rel-
evant than the anharmonic vertices]yu(]yhW )2 and (]yhW )4 in
e

a

lu
the original free energy~before we integrated out th
phononsu). This is because the factorVh(q)}q'

2 /(gyqy
2

1g'q'
2 ) vanishes likeqy

2 in the relevant limituq'u;qy
2 , qy

→0 @the other factors in Eq.~5.11! are precisely the Fourie

transform of (]yhW )4, of course#. This lowers the upper criti-

cal dimension for anomalous elasticityof the hW field to Duc

5 3
2. Thus, in the physical caseD52, there is no anomalou

elasticity in hW ; that is, the elastic constantst and k in Eq.
~5.6! are finite and nonzero asqy→0.

However, as asserted earlier, thefull elasticity Eq.~5.3!,
before uis integrated out,is anomalous, becausegy is driven
to zero asqy→0. Indeed, a self-consistent one-loop pertu
bative calculation ofgy(q), obtained by evaluating the Feyn
man graph in Fig. 5, gives
gy~q!5gy
o2E kBTgy

2~q!py
2~py2qy!2dD21p'dpy /~2p!D

@ tp'
2 1k~p!py

4#@ tup'2q'u21k~ up2qu!~py2qy!4#
, ~5.13!
l-

red

em

at
-

wheregy
o is the ‘‘bare’’ or unrenormalized value ofgy .

Our earlier argument shows thatk(p) can be replaced by
a constant in Eq.~5.13! asp→0, since thehW elasticity is not
anomalous. The self-consistent equation~5.13! can be solved
by the ansatz

gy~q!5qy
huSg~qy /q'

z !. ~5.14!

Simple power counting@34# then shows that we must choos

z5 1
2 , ~5.15!

hu5522D. ~5.16!

It is straightforward to verify that these results hold toall
orders in perturbation theory; that is, at every order, the le
ing dependence onq of the contribution togy scales like
qy

huSg(qy /q'
1/2) with hu5522D.

It is straightforward to verify toall orders in perturbation
theory that there is no such renormalization ofg' . This is
because of the anisotropic scalingq';qy

2 , which implies
that all vertices proportional to powers ofperpendiculargra-
dients ofhW , i.e., powers of¹'hW are irrelevant. Since only
such vertices can renormalizeg'u¹'uu2, there are norel-
evantrenormalization ofg' . As a result,g' remains finite
and nonzero, or, in a word, nonanomalous, asuqu→0.

FIG. 5. Feynman graph equation for the self-consistent eva
tion of gy(q).
d-

Using the facts thatgy(q) is independent ofq' as uq'u
[q'→0 for fixedqy , and, likewise, to be independent ofqy
asqy→0 for fixed q' , we can obtain the limits of the sca
ing functionSg(x):

Sg~x!}H const, x→`

x2hu, x→0 .
~5.17!

For phantommembranes withD52, hu51 andz5 1
2, so we

find

gy~q!}H qy , qy@Aq'

Aq', qy!Aq'.
~5.18!

We will now use this result to compute the mean-squa
real space fluctuationŝ@u(L',y)2u(0,y)#2&5^Du2& of
u(x). These can be obtained via the equipartition theor
and by summing all of the Fourier modes, yielding

^Du2&'E
q'.L'

21 , qy.Ly
21

dq'dqy

~2p!2

12eiq'L'

gy~q!qy
21g'q'

2
.

~5.19!

Let us assume, and verifya posteriori, that the integral in
this expression is dominated by wave vectors withqy

!Aq'. Then, using Eq.~5.18!, we see that

^Du2&'E
q'.L'

21 , qy.Ly
21

dq'dqy

~2p!D

12eiq'L'

cAq'qy
21g'q'

2
,

~5.20!

wherec is a constant. Inspection of this integral reveals th
it is dominated byq’s for which the two terms in the de
nominator balance; this meansqy;q'

3/4!Aq', the last ex-
a-



,
.

st

ld
ic
i’’

r-

u
he
u

.
m

-

.
To

t r
on

-
t

ue

le

-
o

s
e-

pa-
e
il-

s is
en-
s.
both
er

c-
rier

e
es.
ou-

f
n

es:

1842 57LEO RADZIHOVSKY AND JOHN TONER
treme inequality holding asuqu→0. This verifies our earlier a
posteriori assumption thatqy!Aq' in the dominant wave
vector regime.

Now, changing variables in the integralq'[Q' /L' , qy

[Qy /L'
3/4, we find

^Du2&5L'
1/4Su~Ly /L'

3/4!, ~5.21!

where

Su~x![E
Q'.1, Qy.x21

dQ'dQy

~2p!2

12eiQ'

cAQ'Qy
21g'Q'

2
.

~5.22!

We note that the scaling form for theu phonon correlations
is different than that of the height fieldhW , as summarized in
e.g., Eqs.~1.1! and~1.2!, and discussed in more detail below

The limits of Su(x) scaling function can be obtained ju
as we did forSg(x); we find, including ‘‘zero modes’’~see
below!,

Su~x!}H const, x→`

x21, x→0 .
~5.23!

For roughly square membranes,Ly;L'5L, so, asL
→`, Ly /L'

3/4→`, and the first limit of Eq.~5.23! is the
appropriate one. This gives

^Du2&}L'
1/4. ~5.24!

The authors of Ref.@2# measured a quantity that shou
scale like^Du2& in their simulations of a square anisotrop
membrane. They did this via their vividly named ‘‘salam
method: measuring the moment of inertia tensor of
‘‘salami’’ slice, a set ofN points that all had the same inte
nal y coordinate~for a y-tubule phase!. It is straightforward
to show that the smallest eigenvalue of this tensor sho
scale likeN^u(x)2&, since, as we shall see in a moment, t
mean-squared displacements in the other directions are m
larger than those in they direction. Therefore, from Eq
~5.24! we predict that the smallest eigenvalue of this sala
slice moment of inertia tensor scales likeNL1/4. BFT actu-
ally fit this eigenvalue toNlnL, which might appear to dis
agree with our prediction, until one recognizes that forL ’s
between 32 and 100~where most of the data of Ref.@2# are
taken!, L1/45(e/4)lnL to an accuracy of better than 1%
Thus, their fit is certainly consistent with our predictions.
test our full scaling predictions, Eqs.~5.21! and~5.23! more
strenuously, one could simulate membranes with aspec
tios quite different from 1. In particular, we predict based
Eq. ~5.21! that increasingLy at fixed L' from an initially
square configuration wouldnot increase this smallest eigen
value; nor would decreasingLy decrease it, until an aspec
ratio Ly;L'

3/4 is reached, beyond which this eigenval
would increase likeLy

21 .
We now turn to the computation, for the phantom tubu

of the tubule radius of gyrationRG and roughnesshrms, de-
fined by

RG
2 [^uhW ~L' ,y!2hW ~0' ,y!u2&, ~5.25!
a

ld

ch

i

a-

,

hrms
2 [^uhW ~x',Ly!2hW ~x',0!u2&, ~5.26!

whereL' spans the intrinsic' space of the membrane. Be
causeRG is by definition the rms distance between tw
points at the samey, it is roughly the radius of a typical cros
section of the tubule perpendicular to the tubule axis. Lik
wise,hrms measures fluctuations between points widely se
ratedalong the tubule axis; hence, it gives the polymerlik
transverse ‘‘wandering’’ of the tubule. See Fig. 2 for an
lustration ofRG andhrms.

The reason we distinguish between these two quantitie
that they scale in different ways with the membrane dim
sions L' and Ly , in contrast to one’s naive expectation
This happens because there are large contributions to
quantities from ‘‘zero modes,’’ by which we mean Fouri
modes with eitherq' or qy50. Those withq'50 corre-
spond to polymerlike undulations of the entire tubule. Re
ognizing the existence of both types of modes, we Fou
decomposehW (x) as follows:

hW ~x!5
1

AL'
D21Ly

(
q

hW B~q!eiq•x1
1

ALy
(
qy

hW 0y~qy!eiqyy

1
1

AL'
D21(q'

hW 0'~q'!eiq'•x', ~5.27!

where B, 0y, and 0' denote ‘‘bulk modes’’~i.e., modes
with neitherq' nor qy50), and ‘‘zero modes’’~i.e., modes
with either q' or qy50), respectively. Note that we hav
chosen different normalizations for the three types of mod
For phantom membranes, we proceed by inserting this F
rier decomposition into the harmonic,hW -dependent piece o
the elastic free energyFel ~which is justified, since, as show
above, the elasticity forhW for a phantom tubuleis not anoma-
lous!, obtaining

F05 1
2 (

q
~ tq'

2 1kqy
4!uhW B~q!u21 1

2 L'
D21(

qy

kqy
4uhW 0y~qy!u2

1 1
2 Ly(

q'

tq'
2 uhW 0'~q'!u2. ~5.28!

Note the explicit presence of the factors ofL'
D21 andLy for

the 0 modes. Applying equipartition to Eq.~5.28!, we can
obtain the mean-squared fluctuations of the Fourier mod

^uhW B~q!u2&5
kBT~d2D !

tq'
2 1kqy

4 , ~5.29!

^uhW 0y~qy!u2&5
kBT~d2D !

L'
D21kqy

4
, ~5.30!

^uhW 0'~q'!u2&5
kBT~d2D !

Ly tq'
2 . ~5.31!

Using these expressions inside Eqs.~5.25! and ~5.26!, and
being careful about converting sums onq into integrals, we
obtain



n

th

-

set
rin-
nt
-

t

ur

ic-
-

m,

n

of

le

rse

e
or

we

57 1843ELASTICITY, SHAPE FLUCTUATIONS, AND PHASE . . .
RG
2 52~d2D !F kBT

Ly
E

L'
21

dD21q'

~2p!D21

1

tq'
2 ~12eiq'•L'!

1kBTE
L'

21 ,Ly
21

dD21q'dqy

~2p!D

~12eiq'•L'!

tq'
2 1kqy

4 G , ~5.32!

where the subscriptsL'
21 and Ly

21 denote infrared cutoffs
uq'u.L'

21 andqy.Ly
21 , with L'[uL'u.

We observe here thatRG in Eq. ~5.32! does not receive
any contribution from theq'50 ‘‘zero mode’’ ~i.e., in ad-
dition to the bulk mode,RG receives a contribution only
from theqy50 zero mode!.

ScalingL' out of both integrals forRG by the change of
variablesQ'[q'L' andQy[qyAL', we obtain

RG
2 5FC1L'

32D

Ly
1L'

5/22DI RS Ly

AL'

D G , ~5.33!

where

C1[2~d2D !kBTE
1

dD21q'

~2p!D21

~12eiq'•L̂'!

tq'
2

~5.34!

is a constant ofO(1), and

I R~x![2~d2D !kBTE
1, x21

dD21q'dqy

~2p!D
~12eiq'•L̂'!

tq'
2 1kqy

4
,

~5.35!

with L̂' the unit vector alongL' . Defining the scaling func-
tion

SR~x![AC1

x
1I R~x!, ~5.36!

we see thatRG can be rewritten in the scaling form

RG~L' ,Ly!5L'
n SR~Ly /L'

z !, ~5.37!

with, for phantom membranes,

n5
522D

4
, ~5.38!

z5 1
2 . ~5.39!

We will see later that the scaling form Eq.~5.37! continues
to apply when self-avoidance is included, but with differe
values ofn andz, and a different scaling functionSR(x). For
phantom membranes, from our explicit expression for
scaling functionSR , we see that it has the limiting forms:

SR~x!}H 1/Ax for x→0

const for x→` .
~5.40!

In particular, the limiting form asx→` implies that for the
physically relevant case of a square membraneL';Ly;L
→`, for which Ly@L'

z , bulk modes dominate, and we ob
tain
t

e

RG}L'
n . ~5.41!

The simulations of BFT@2# measuredRG for phantom
tubules by calculating the largest moment of inertia for a
of membrane points that all had the same value of the int
sic coordinatey. While we have used here a slightly differe
definition, Eq.~5.25!, the square root of this moment of in
ertia should scale like ourRG . And, indeed, BFT found tha
it did scale like a power ofL, as in Eq. ~5.41!, with n
50.2460.02, in excellent quantitative agreement with o
predictions ofn5 1

4, Eq. ~5.38! evaluated inD52. It would
be of great interest to test our full anisotropic scaling pred
tion of Eq. ~5.37! by varying the aspect ratio of the mem
brane in such simulations. For instance, one could fixL' and
increaseLy ; we predict that one should observeno change in
RG . The same should hold if onedecreased Ly at fixedL' :
RG should remain unchanged untilLy;AL', at which point
the tubule should begin to get thinner~i.e., RG should de-
crease!.

Equations~5.36! and ~5.40! also correctly recover the
limit of Ly5constant!L'

z→`, where the qy50 ‘‘zero
modes’’ dominate, the tubule simply becomes a phanto
coiled up,D21-dimensional polymeric network of sizeL'

embedded ind21 dimensions, with the radius of gyratio
RG(L');L'

(32D)/2 . In the physical dimensions (D52 and
d53) in particular this gives a coiled up ideal polymer
lengthL' with RG;L'

1/2, as expected.
We now turn our attention to the calculation of the tubu

roughnesshrms. As we will see, here theq'50 zero mode
will play an essential role and will dominate the transve
undulations for ‘‘very long’’ tubules, which~because of an-
isotropic scaling! in particular includes tubules made from
square membranes. Using the definition ofhrms, Eq. ~5.26!,
we have

hrms
2 52~d2D !F kBT

L'
D21ELy

21

dqy

~2p!

1

k~qy!qy
4 ~12eiqyLy!

1kBTE
L'

21 ,Ly
21

dD21q'dqy

~2p!D

~12eiqyLy!

tq'
2 1kqy

4 G . ~5.42!

Here we observe thathrms in Eq. ~5.42! does not receive any
contribution from theqy50 zero mode~i.e., in addition to
the bulk mode,hrms receives a contribution only from th
q'50 zero mode!. This is to be contrasted with the behavi
of RG that we noted following Eq.~5.32!, and is responsible
for the differences in scaling properties ofRG and hrms,
noted above.

Now, for perverse and twisted reasons of our own,
choose to scaleLy , rather thanL' , out of the integrals in
this expression, via the change of variablesQy[qyLy ,Q'

[q'Ly
2 , which leads to

hrms
2 5F C2Ly

3

L'
D21

1Ly
522DI hS Ly

AL'

D G , ~5.43!

where
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C2[2~d2D !kBTE
1

dQy

2p

~12eiQy!

kQy
4

~5.44!

is yet another constant ofO(1), and

I h~x![2~d2D !kBTE
x2,1

dD21Q'dQy

~2p!D

~12eiQy!

tQ'
2 1kQy

4
.

~5.45!

Defining the scaling function

Sh~x![AC2x2~D21!1I h~x!, ~5.46!

we see thathrms can be rewritten in the scaling form

hrms~L' ,Ly!5Ly
zSh~Ly /L'

z !, ~5.47!

with, for phantom membranes,

z5
522D

2
, ~5.48!

z5 1
2 . ~5.49!

Again, this scaling law Eq.~5.47! continues to apply when
self-avoidance is included, but with different values ofz and
z.

Equations~5.37! and ~5.47! give information about the
tubule roughness for arbitrarily large sizeL' and Ly , and
arbitrary aspect ratio. For the physically relevant case o
square membraneL';Ly;L→`, for which Ly@L'

z , we
obtain,

hrms}
Ly

z1~D21!/2z

L'
~D21!/2

, ~5.50!

}Lz1~D21!~12z!/2z, ~5.51!

Equations~5.48! and ~5.49! then give, for aD52 phan-
tom tubule,z5 1

2 andz5 1
2,

hrms;
Ly

3/2

L'
1/2

, ~5.52!

and therefore predict, for a square membrane,

hrms;L. ~5.53!

This prediction for square phantom membranes was
spectacularly quantitatively confirmed in simulations by B
@2#. Their ingenious procedure for determininghrms is rather
involved, and the interested reader is referred to their pa
for a clear and complete discussion of it. The bottom li
however, is that they foundhrms;Lg, ~our g is z in their
notation! with g50.89560.06, in excellent agreement wit
our predictiong51 from Eq. ~5.53! above. As withRG , it
would be interesting to test the full scaling law Eq.~5.47! by
simulating nonsquare membranes, and testing for the in
pendent scaling ofhrms with Ly and L'. Note that, unlike
a

o

er
,

e-

RG , according to Eq.~5.52!, hrms will show immediate
growth ~reduction! when one increases~decreases! Ly at
fixed L' .

Because, unlike the flat phase, no ln(L/a) correction
arises, the (D52) phantom tubule is just marginallystable,
but with wild transverse undulations which scale linea
with its length. As we will see in Sec. VI, these wild fluc
tuations will be suppressed when the effects of se
avoidance are included.

The above discussion also reveals that our earlier con
sions about the lower critical dimensionD lc for the existence
of the tubule are strongly dependent on howL' andLy go to
infinity relative to each other; i.e., on the membrane asp
ratio. The earlier conclusion thatD lc5

3
2 only strictly applies

when the bulk modes dominate the physics, which is the c
for a very squat membrane, withLy'L'

z , in which caseLy

!L' . For the physically more relevant case of a squ
phantommembrane, from the discussion above, we find t
D lc522, where the2 superscript means that there are
logarithmic corrections atD52 and therefore strictly speak
ing theD52 tubuleis marginally stable.

Equations~5.37! and ~5.47! also correctly recover the
limit of L'

z 5constant!Ly→`, where the tubule simply be
comes a polymer of thicknessRG(L') given in Eq.~5.25! of
length Ly embedded ind21 dimensions. As already dis
cussed in Sec. I for a more general case of a self-avoid
tubule, these equations then correctly recover this polym
limit, giving

hrms'LP~Ly /LP!3/2, ~5.54!

with an L'-dependent persistent length

LP~L'!}L'
D21 . ~5.55!

which agrees with Eq.~1.10! of Sec. I forD52, when one
remembers that, for the phantom membranes,hk50. So, as
expected for a phantom tubule, ifL' does not grow fast
enough~e.g., remains constant!, while Ly→`, the tubule be-
haves as a linear polymer and crumples along its axis and
distinction between the crumpled and tubule phases dis
pears. To summarize, the radius of gyrationRG and the tu-
bule roughnesshrms scale differently with membrane sizeL
for a square membrane because the former is dominate
bulk modes, while the latter is dominated byq'50 modes.

VI. SELF-AVOIDANCE IN THE TUBULE PHASE

We now look at the effects of self-avoidance on the tub
phase, and begin by calculating the upper critical embedd
dimensionduc below which the self-avoidance becomes r
evant in the tubule phase. A model of a self-avoiding me
brane in the tubule phase is described by a free energy f
tional which is a combination of the elastic free energyFel
from Eq.~5.3! and the self-avoiding interactionFSA from Eq.
~2.1! specialized to the tubule extended in they direction
using Eq.~5.1! for rW(x),
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FSA5
b

2E dy dy8dD21x'dD21x'8

3d~d21!@hW ~x',y!2hW ~x'8 ,y!#

3d@zyy1u~x',y!2zyy82u~x'8 ,y8!#. ~6.1!

If the in-plane fluctuationsu scale sublinearly withy ~which
we will self-consistently verifya posteriori that they do!, at
long length scales one can ignore the phonons inside
self-avoiding interaction above. This can be confirmed m
formally by an explicit renormalization group analysis@33#.
We then obtain a self-avoiding interaction that is local iny,
with corrections that are irrelevant in the renormalizati
group sense and therefore subdominant at long length sc
The appropriate free energy that describes a self-avoid
tubule is then given by

F5 1
2 E dD21x'dy$g@]yu1 1

2 ~]yhW !21 1
2 ~]yu!2#

1k~]y
2hW !21t~]a

'hW !21g'~]a
'u!2

1gy@]yu1 1
2 ~]yhW !21 1

2 ~]yu!2#2%

1vE dy dD21x'dD21x'8 d~d21!@hW ~x',y!2hW ~x'8 ,y!#,

~6.2!

wherev5b/2zy .
It is important for simulators to note that, although t

self-avoiding interaction is effectively local inintrinsic coor-
dinatey, this doesnot mean that the effects of self-avoidan
can be included in simulations that have each particle on
membrane avoid only those labeled by the sameintrinsic y
coordinate. Such a simulation, rather, models the very dif
ent ~unphysical! self-avoiding interaction

FSA
wrong5vE dy dD21x'dD21x'8 d@u~x',y!2u~x'8 ,y!#

3d~d21!@hW ~x',y!2hW ~x'8 ,y!#, ~6.3!

which accounts for interaction only of particles that have
same intrinsic coordinatey and the same extrinsic coordi
nate. For large membranes, this unphysical interaction
smaller than the true self-avoiding interaction in Eq.~6.2! by
a factor that scales like the inverse of the rms fluctuation
u, ^u2&21/2, as can be seen trivially from the scaling of thed
function of u in Eq. ~6.3!. Since these fluctuations ofu di-
verge asL'→` like urms;L

'

zu , with zu.0 ~e.g.,zu5 1
8, for

d>11 andD52), thewrongself-avoiding interaction in Eq
~6.3! drasticallyunderestimatesthe true self-avoiding inter-
action by a factor that diverges in the thermodynamic lim
Although it is tempting to do so in simulations, one must
careful not to implement the unphysical self-avoiding int
action in Eq.~6.3!. Since it might be difficult to implemen
the approximate~but asymptotically exact! self-avoiding in-
teraction of Eq.~6.2! in simulations, it is easiest to simulat
the unapproximated interaction in Eq.~6.1!.
he
e

es.
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e
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e
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In the next three subsections we analyze the propertie
a self-avoiding tubule described by this nonlinear elastic f
energy, using Flory theory@1#, the renormalization group
and the Gaussian variational method@1#.

A. Flory theory

The effects of self-avoidance in the tubule phase can
estimated by generalizing standard Flory arguments fr
polymer physics@14# to the extended tubule geometry. Th
total self-avoidance energy scales as

ESA}Vr2, ~6.4!

where

V}RG
d21Ly ~6.5!

is the volume in the embedding space occupied by the
bule, andr5M /V is the embedding space density of th
tubule. Using the fact that the tubule massM scales like
L'

D21Ly , we see that

ESA}
LyL'

2~D21!

RG
d21

. ~6.6!

Using the radius of gyrationRG}L'
n , and considering, as

required by the anisotropic scaling, a membrane withL'

}Ly
2 , we find that ESA}Ly

lSA around the phantom fixed
point, with

lSA5114~D21!22~d21!n. ~6.7!

Self-avoidance is relevant whenlSA.0, which, from the
above equation, happens forn5nph5(522D)/4 @as per Eq.
~5.38!# when the embedding dimension

d,duc
SA5

6D21

522D
. ~6.8!

For D52-dimensional membranes,duc
SA511. Thus, self-

avoidance is strongly relevant for the tubule phase ind53,
in contrast to the flat phase.

We can estimate the effect of the self-avoidance inter
tions onRG(L') in Flory theory, by balancing the estimat
Eq. ~6.6! for the self-avoidance energy with a similar es
mate for the elastic energy:

Eelastic5tS RG

L'
D 2

L'
D21Ly . ~6.9!

EquatingEelasticwith ESA, we obtain a Flory estimate for th
radius of gyrationRG :

RG~L'!}L
'

nF , nF5
D11

d11
, ~6.10!

which should be contrasted with the Flory estimate ofnF
c

5(D12)/(d12) for thecrumpledphase. The similarity of
the expressions is not surprising, since for the tubule ph
the y dimension decouples in both the intrinsic and the e
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bedding spaces and is not affected by the self-avoidance
the physical caseD52, d53, Eq. ~6.10! gives

RG}L'
3/4, ~6.11!

a result that is known to beexactfor the radius of gyration of
a D51 polymer embedded ind52-dimensions@35#. Since
the cross section of theD52 tubule, crudely speaking, trace
out a crumpled polymer embedded in two dimensions~see
Fig. 2!, it is intriguing to conjecture thatn5 3

4 is also the
exact result for the scaling of the thickness of the tubu
Unfortunately, we have no arguments supporting this app
ing conjecture.

For a square membrane,Ly;L' , it is straightforward to
argue, as we did previously, that theqy50 zero modes do
not contribute toRG , andL' is the relevant cutoff. Hence
Eq. ~6.10! gives the correct radius of gyration. More gene
ally, we expect

RG~L' ,Ly!}L'
n SRS Ly

L'
z D , ~6.12!

whereSR(x) is the scaling function given in Eq.~1.5! andz
is the anisotropy exponent given in Eq.~1.3!.

B. Renormalization group and scaling relations

In this subsection, we present a renormalization gro
analysis of the physicalself-avoidingmembrane, which will
also require a simultaneous treatment of the nonlinear e
ticity that was already present in a phantom membrane
discussed in Sec. V.

The correct model, which incorporates the effects of b
the self-avoiding interaction and the anharmonic elasticity
defined by the free energy, Eq.~6.2!,

F5 1
2 E dD21x'dy$k~]y

2hW !21t~]a
'hW !21g'~]a

'u!2

1gy@]yu1 1
2 ~]yhW !2#2%

1vE dy dD21x'dD21x'8 d~d21!@hW ~x',y!2hW ~x'8 ,y!#,

~6.13!

where we have setg50 and dropped the subdominant ph
non anharmonicity.

It is convenient for the purposes of this section to cho
the units of length such thatt5k51 throughout, and choos
the renormalization group rescalings to keep them fixed a
even after the diagrammatic corrections are taken into
count ~i.e., beyond the tree level!. We follow the standard
renormalization group procedure@36#:

~i! Integrate out fluctuations of the Fourier modesu(q)
and hW (q) of the fieldsu(x) and hW (x) with wave vectors in
the high wave vector shellLe2 l,q',L, 2`,qy,`,
where the ultraviolet cutoffL is of order an inverse micro
scopic length, andl is a parameter known as the ‘‘renorma
ization group time.’’ This integration can, of course only
accomplished perturbatively in the nonlinear couplingsv and
gy .
or

.
l-

-

p

s-
as

h
is

e

1
c-

~ii ! Anisotropically rescale lengths (x' ,y) and fields

@hW (x),u(x)#, so as to restore the ultraviolet cutoff toL:

x'5elx'8 , ~6.14a!

y5ezly8, ~6.14b!

hW ~x!5en lhW 8~x8!, ~6.14c!

u~x!5e~2n2z!lu8~x8!, ~6.14d!

where we have chosen the convenient~but not necessary!
rescaling of the phonon fieldu so as to preserve the form o
the rotation-invariant operator@]yu1 1

2 (]yhW )2#2.
~iii ! Define the effective length-scale-dependent coupl

constants so as to bring the resulting long wavelength ef
tive free energy into the same form as Eq.~6.13!.

As discussed above, we will choose the arbitrary resca
exponentsn andz so as to keep the renormalizedk( l ) and
t( l ) equal to 1. This choice ofn and z can be shown by
standard renormalization group arguments to be then andz
that appear in the scaling function Eqs.~1.1! and~1.2!, as we
will demonstrate later in this subsection.

The result of the three steps of the above renormaliza
group transformation~i.e., mode integration, rescaling, an
coupling redefinition! can be summarized in differential re
cursion relations for the flowing coupling constants:

dt

dl
5@2n1z1D232 f t~v !#t, ~6.15!

dk

dl
5@2n23z1D211 f k~gy ,g'!#k, ~6.16!

dgy

dl
5@4n23z1D212 f g~gy!#gy , ~6.17!

dg'

dl
5@4n2z1D23#g' , ~6.18!

dv
dl

5@2D221z2~d21!n2 f v~v !#v, ~6.19!

where the variousf functions represent the graphical~i.e.,
perturbative! corrections. Since the self-avoiding interactio
only involveshW , and the parameters in thehW propagator (t
andk) are going to be held fixed at 1, the graphical corre
tions coming from self-avoiding interaction alone depe
only on the strengthv of the self-avoiding interaction. There
fore, to all orders inv, and leading order ingy , f t(v) and
f v(v) are only functions ofv and f k(gy ,g'), andf g(gy) are
only functions ofgy andg' .

It is important to note thatg' suffers no graphical correc
tions, i.e., Eq.~6.18! is exact. This is enforced by an exac
symmetry

u~x' ,y!→u~x' ,y!1x~x'!, ~6.20!

wherex(x') is an arbitrary function ofx' , under which the
nonlinearities inF are invariant.
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We further note that there is an additional tubu
‘‘gauge’’-like symmetry forgy50,

hW ~x' ,y!→hW ~x' ,y!1fW ~y!, ~6.21!

under which the only remaining nonlinearity, the se
avoiding interaction, being local iny, is invariant. This ‘‘tu-
bule gauge’’ symmetry demands thatf k(gy50,g')50,
which implies that ifgy50, there is no divergent renorma
ization of k, exactly, i.e., the self-avoiding interactionalone
cannot renormalizek. This nonrenormalization ofk by the
self-avoiding interaction, in a truncated~unphysical! mem-
brane model withgy50, has been recently verified to a
orders in a perturbative renormalization group calculat
@3#.

To see that then andz obtained as fixed point solutions o
Eqs.~6.15!–~6.19! have the same physical significance as
n and z defined in the scaling expressions Eqs.~1.1! and
~1.2! for the radius of gyrationRG and tubule wigglyness
hrms, we use the renormalization group transformation
relate these quantities in the unrenormalized system to th
in the renormalized one. This gives, for instance, for
radius of gyration,

RG~L' , Ly ;t~0!,k~0!, . . . !

5^uhW ~L' ,y!2hW ~0' ,y!u2&1/2uLy ,t~0!,k~0!, . . .

5en l^uhW ~e2 lL' ,y!2hW ~0' ,y!u2&1/2ue2zlLy ,t~ l !,k~ l !, . . .

5en lRG~e2 lL' ,e2zlLy ;t~ l !,k~ l !, . . . !, ~6.22!

wheret( l ),k( l ), . . . stand for all flowing coupling constan
whose evolution withl is determined by the recursion rela
tions Eqs. ~6.15!–~6.19!. Choosing l 5 l * 5 lnL' this be-
comes

RG~L', Ly ;t,k, . . . !5L'
n RG@1,Ly /L'

z ;t~l* !,k~l* !, . . . #.
~6.23!

This relation holds forany choice of the~after all, arbitrary!
rescaling exponentsn andz. However,if we make the spe
cial choice such that Eqs.~6.15!–~6.19! lead to fixed points
@see Eqs.~6.36!–~6.39!#, t( l * ), k( l * ), . . . in Eq.~6.23! go
to constants, independent ofl * ~and henceL'), asL' and
hencel * , go to infinity. Thus, in this limit, we obtain, from
Eq. ~6.23!,

RG~L' , Ly ;t,k, . . . !5L'
n RG~1,Ly /L'

z ;t* ,k* , . . . !,
~6.24!

where t* ,k* , . . . are the fixed point values of couplin
constants. This result clearly agrees with the scaling fo
for RG , Eq. ~1.1! ~with analogous derivation forhrms) if we
defineSR(x)[RG(1,x;t* ,k* ,gy* ,v* ).

The recursion relations, Eqs.~6.15!–~6.19!, reproduce all
of our phantom membrane results, as well as the upper c
cal embedding dimensionduc

SA for self-avoidance predicted
by Flory theory, Eq.~6.7!, and the upper criticalintrinsic
dimension Duc5

5
2 for anomalous elasticity for phantom

membranes. To see this, consider first the phantom m
n

e

o
se
e

s

ti-

-

brane; i.e.,v50. In this case,f t(v)50, and to keept( l )
fixed we see from the recursion relation Eq.~6.15! for t( l )
that we must choose

2n1z1D2350. ~6.25!

Assuming for the moment thatf k(gy ,g')→0 as l→`,
which, as we shall see in a moment, it does for phant
membranes forD. 3

2, we see from the recursion relation E
~6.16! for k( l ) that we must choose

2n23z1D2150. ~6.26!

Solving Eqs.~6.25! and ~6.26! for z andn yields the phan-
tom membrane resultsz5 1

2, n5(522D)/4, as obtained in
Eqs.~5.38! and ~5.39!.

To extract the upper-critical embedding dimensionduc
SA

for self-avoidance from the renormalization group recurs
relations, we construct from them a flow equation for a
mensionless coupling constant

ṽ 5vtakb, ~6.27!

wherea and b will be chosen to eliminate the arbitrary re
scaling exponentsn andz from the recursion relation forṽ .
This requirement leads to the choices

a5~3d25!/8 , ~6.28!

b5~d11!/8 , ~6.29!

which imply

d ṽ
dl

5S @6D212~522D !d#/42 f v

1
d11

8
f k2

3d25

8
f tD ṽ , ~6.30!

Of course, an identical flow equation is obtained forv( l ) if
one instead requires thatt( l ) and k( l ) are fixed, i.e., inde-
pendent ofl , thereby determiningn and z and using them
inside Eq.~6.19!.

It is easy to see that the sign of the terms in the squ
bracket determines the relevance of the self-avoiding in
action, which becomes relevant when

6D212~522D !d.0, ~6.31!

i.e., for d,duc
SA5(6D21)/(522D), consistent with the

analysis of the Flory theory, Eq.~6.7!.
Likewise, the renormalization group flow equations co

tain information about the upper-criticalintrinsic dimension
for the anomalous elasticity,Duc, below which tubule elas-
ticity becomes anomalous. This can be seen~analogously to
the discussion of the relevance of self-avoidance couplingv)
by using Eqs.~6.15!–~6.17! to construct the renormalizatio
group flow equation for the dimensionless coupling const

g̃y5
gy

t3/4k5/4
, ~6.32!

chosen such that its flow
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d g̃y

dl
5S 5

2
2D2 f g2

5

4
f k1

3

4
f tD g̃y ~6.33!

is independent of the arbitrary rescaling exponentsz andn.
Again the same recursion relation can be obtained by ins
using the values ofz and n required to keept( l ) and k( l )
fixed inside the flow equation forgy( l ), Eq. ~6.17!. It is then
obvious that anharmonic elasticity becomes relevant foD
,Duc5

5
2, where anomalous elasticity of the tubule is i

duced. As we will see below, in a phantom tubule or a tub
embedded ind.d*, this anomalous elasticity manifests i
self only in phonon (u) fluctuations, i.e., softensgy , but
doesnot renormalize the bending rigidityk. In physicaltu-
bules, however, which are self-avoiding and are embedde
d53,d* '6.5, the elasticity is fully anomalous, both wit
respect to the phononu fluctuations~i.e., gy vanishes asq
→0) and the heighthW undulations~i.e., k diverges asq
→0).

To analyze the renormalization ofk in a self-avoiding
membrane further, it is convenient to integrate out the p
non field u as we did in Sec. V for the phantom tubul
obtaining

F5 1
2 E dD21x'dy@k~]y

2hW !21t~]a
'hW !2#1Fanh@hW #1FSA@hW #

~6.34!

whereFanh is the nonlocal interaction, Eq.~5.11!, mediated
by integrated out phonons, with a kernel

Vh~q!5
gyg'q'

2

gyqy
21g'q'

2 , ~6.35!

andFSA is the self-avoiding interaction.
The long wavelength properties of the tubule phase w

very much depend on the behavior of the denominator in
kernelVh at long length scales. Ifgy(q)qy

2@g'(q)q'
2 ~as we

saw for a phantom tubule! then at long scalesVh(q)
'g'q'

2 /qy
2 , which behaves like;qy

2 in the relevant limit of
q';qy

2 . In this case, simple power counting around t
Gaussian fixed point then shows that this elastic nonlinea
only becomes relevant forD,Duc53/2, i.e., is irrelevant for
a physicalD52-dimensional tubule, as we argued in Sec.

On the other hand, if the scaling is such thatg'(q)q'
2

dominates overgy(q)qy
2 , thenVh(q)'gy , i.e. a constant a

long length scales. Simple power counting then shows
this coupling is relevant forD,Duc5

5
2, and the bending

rigidity modulus of aD52-dimensional tubuleis anomalous
in this case.

As we saw in our analysis of aphantomtubule, for which
one is perturbing around aGaussianfixed point described by
q';qy

2!qy ~in the long wavelength limit!, the anharmonic
nonlinearity is irrelevant forD. 3

2 and k is not anomalous.
We now need to extend this analysis to a physical tub
i.e., to include the effects of self-avoidance.

The analysis of the behavior ofVh(q) ~which determines
the relevance of anharmonic elasticity! at long scales, around
an arbitrary fixed point, is more conveniently done using
language of the renormalization group through the recurs
relations Eqs.~6.15! and ~6.19!. At the globally stable fixed
ad

e

in

-

ll
e

ty

.

at

e,

e
n

point, in the presence of both the nonlinear elasticity and
self-avoiding interaction, we can keept5k51 andgy andv
fixed at fixed point values, by requiring

2n1z1D232 f t~v* !50, ~6.36!

2n23z1D211 f k~gy* ,g'
* !50, ~6.37!

4n23z1D212 f g~gy* !50, ~6.38!

2~D21!1z2n~d21!2 f v~v* !50. ~6.39!

In light of the above discussion, the anharmonic vertex fohW
in this renormalization group picture becomes relevant wh
g'( l→`) renormalizes to infinity, while it isirrelevant
wheng'( l→`) flows to zero. Thus, the relevance ofVh is
decided by the sign of the renormalization group flow eige
value ofg'( l ) in Eq. ~6.18!,

lg'
54n2z1D23, ~6.40!

which is exactlydetermined by the values ofn andz, since
g' suffers no graphical renormalization.

As we have discussed in previous sections, for a phan
tubule n5(522D)/4 and z5 1

2 . For d,duc
SA5(6D21)/

(522D) (511 for D52), these values are modified by th
self-avoiding interaction, but only by ordere[d2duc

SA , i.e.,

n5~522D !/41O~e!, ~6.41!

z51/21O~e!. ~6.42!

Hence aD52-dimensional tubule, embedded ind dimen-
sions close toduc

SA511, lg'
521/2 andg'( l ) flows accord-

ing to

dg'

dl
5F2

1

2
1O~e!Gg' , ~6.43!

i.e., g' is irrelevant near d511 ~for e!1), and Vh(q)
;g'q'

2 /qy
2;qy

22O(e) is irrelevant for a physical
D52-dimensional tubule, and, hence,f k in Eq. ~6.16! van-
ishes asl→`. So k is unrenormalized neard511, for D
52. That is, as we described above, the anharmonic ela
ity is irrelevant to thebendelasticity for embedding dimen
sions nearduc

SA , and in this case the full model of a sel
avoiding tubule with nonlinear elasticity reduces to t
linear elastic truncated model introduced by us@1# and re-
cently further analyzed in Ref.@3#.

In this simpler~but unphysical! case, one is justified in
ignoring the nonlinear elasticity. One is then able to analy
~perturbatively ine5duc

SA2d) the effects of the self-avoiding
interaction alone, by computing the functionsf t(v) and
f v(v) appearing in Eqs.~6.15! and ~6.19! @3#. Since, as we
discussed above, the ‘‘tubule gauge’’ symmetry guarant
that in this case the self-avoiding interaction alone can
renormalizek, f k50. Thus, ford nearduc

SA , Eq. ~6.37! leads
to hk50 and anexact exponent relation~leaving only a
single independent tubule shape exponent!

z5 1
3 ~2n1D21!, ~6.44!
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which is exact for a finiterange d* ,d,duc
SA of embedding

dimensions, and for phantom tubules in any embedding
mension. ForD52, this result was obtained independen
in Ref. @3#.

However, this simple scenario, and, in particular, the sc
ing relation Eq.~6.44!, is guaranteedto break down asd is
reduced. The reason for this is that, asd decreases,n in-
creases, and eventually becomes so large that the eigen
lg'

of g' changes sign and becomes positive. As discus
earlier, once this happens, the nonlinear vertex, Eq.~6.35!,
becomes relevant, andk acquires a divergent renormaliza
tion, i.e., f kÞ0, and bend tubule elasticity becomes anom
lous. We will now show that the critical dimensiond* below
which this happens forD52 is guaranteedto be . 7

2, and
hence, obviously,.3.

To show this, we use the exponent relation Eq.~6.44!,
which is valid for d.d* , inside the expression for the e
genvaluelg'

, Eq. ~6.40!, obtaining

lg'
5 1

3 ~10n12D28!. ~6.45!

We then take advantage of a rigorous lower bound onn,

n.
D21

d21
, ~6.46!

imposed by the condition that the monomer densityr
}L'

D21/RG
d21}L'

D212n(d21) remain finite in the thermody
namicL'→` limit. Using this bound inside Eq.~6.45!, we
obtain

lg'
>

1

3 S10
D21

d21
12D28D, ~6.47!

from which it follows thatlg'
mustbecome positive ford

,d
*
lb(D), with

d
*
lb~D !5

4D21

42D
, ~6.48!

d
*
lb~2!5 7

2 , ~6.49!

as asserted above.
In fact, d* (2) is probably quite a bit larger than its72

lower bound, as two estimates of it indicate. If, for examp
we take the Flory tubule exponentn5(D11)/(d11) in Eq.
~6.45!, we obtain

d
*
F 5

6D11

42D
, ~6.50!

d
*
F ~2!5 13

2 , ~6.51!

while if we use thee5112d expansion result forn of Bow-
ick and Guitter, (D52) @3#,

ne5
3

41d
2

1

2
, ~6.52!

with
i-

l-

lue
ed

-

,

d521.05S e

8D , ~6.53!

we obtain

d
*
e 55.92. ~6.54!

So, based on the above estimates, we expect that inD
52-dimensional tubule, embedded ind,d* '6, the fixed
point of the truncated tubule model introduced by us@1# and
studied in Ref.@3#, is unstableto anharmonic elasticityFanh.
This means thatk diverges at long length scales, and t
scaling relation, Eq.~6.44!, betweenz and n breaks down.
Thus, for the physical embedding dimensiond53, the tu-
bule bend elasticity is certainly anomalous, in the sense
k diverges, and probably quite strongly. We summarize
above discussion in Fig. 6, schematically illustrating how
renormalization group flow ofg' , and therefore the anoma
lous k elasticity, change~at d* ) as a function of embedding
dimensiond.

Onced,d* , the new nontrivial relations Eqs.~6.37! and
~6.38! hold, with functionsf k(gy ,g') and f g(gy) evaluated
at the fixed point valuesgy* andg'

* .
Using the sort of renormalization group~RG! correlation

function matching calculations described earlier, E
~6.22!–~6.24!, it is straightforward to show that the correla
tion functions of the tubule, including anomalous elastic
fects, are correctly given by the harmonic results, Eqs.~5.6!
and~5.7!, exceptthat the elasticconstants gy andk must be
replaced by wave-vector-dependent quantities that va
and diverge, respectively, asq→0:

gy~q!5qy
huSg~qy /q'

z !, ~6.55!

k~q!5qy
2hkSk~qy /q'

z !, ~6.56!

with

FIG. 6. Schematic illustration~specialized toD52) of the
change in relevance ofg'( l ) which occurs atd* . For embedding
dimensions belowd* ~which includes the physical case ofd53),
g'( l ) becomes relevant, leading to anomalous bending elast
with k(q);qy

2hk , which diverges at long length scales. Other co
sequences of this qualitative and quantitative change ford,d* are
discussed in the text.
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zhk5 f k~gy* ,g'
* !, ~6.57!

zhu5 f g~gy* !. ~6.58!

Our earlier conclusion that the relevance ofVh is deter-
mined by the sign oflg'

@Eq. ~6.40!# can be reproduced b

simply noting thatgy(q)qy
2 scales likeqy

hu12 , and in the long
wavelength limit is therefore subdominant tog'q'

2 ;qy
2/z

when

zhu.222z, ~6.59!

which, upon using Eq.~6.38! and the definition ofhu

5 f g(gy* )/z, is identical to the condition thatlg'
.0.

The scaling functions have the asymptotic forms

Sg~x→0!→x2hu, ~6.60!

Sk~x→0!→xhk. ~6.61!

Combining Eqs.~6.57! and~6.58! for hk andhu with the RG
fixed point conditions, Eqs.~6.37! and~6.38!, shows that, at
this new globally stable fixed point,two exact relations hold
betweenfour independent exponentsz, n, hk , andhu @in-
stead of a single relation, Eq.~6.44!, between two expo-
nents#:

z5
1

32hk
~2n1D21!, ~6.62!

z5
1

31hu
~4n1D21!. ~6.63!

FIG. 7. Schematic of the tubule ‘‘phase’’ diagram in the embe
ding d vs intrinsic D dimensions. Self-avoiding interaction be
comes relevant ford,duc

SA(D)5(6D21)/(522D) (511 for D
52). Below the d* (D) curve @for which the lower bound is
d

*
lb(D)5(4D21)/(42D)] the anharmonic elasticity becomes re

evant, leading to anomalous elasticity with a divergent bending
gidity.
That is, in contrast to the behavior ford.d* , for d,d*
there aretwo independent exponents characterizing the
bule phase,not one. We furthermore note that these expone
relations automatically contain the rotational symme
Ward identity. This can be easily seen by eliminatingn from
Eqs.~6.62! and ~6.63!, obtaining

2hk1hu532~D21!/z. ~6.64!

Ultimately, the origin of this relation is the requirement th
graphical corrections do not change the form of the rotati
ally invariant operator@]yu1 1

2 (]yhW )2#.
Just as the divergence ofk is controlled byf k(gy* ,g'

* ),
the softening of gy(q);qy

hu is determined by thehu

5z fg(gy* ). Becausef g(0)50, this physical gy(q) remains
nonzero and finite asq→0, only if the running coupling
gy( l ) in the renormalization group recursion equation~6.17!
doesgo to zero@because then the graphical piecef g(g* )
vanishes#. Examining the flow equation forgy( l ), Eq. ~6.17!,
for gy( l ) to vanish, we must have

4n23z1D21,0. ~6.65!

However, using the lower bound onn, Eq. ~6.46! in the
physical case ofD52 andd53, we find n. 1

2. Hence, as
long asz,1, Eq. ~6.65! is not satisfied, and thereforegy(q
→0)→0, that is,hu.0. We summarize the above discu
sion in Fig. 7.

We now show that the above general analysis of tub
anomalous elasticity in the presence of self-avoidance,
tained using the renormalization group, can be reprodu
via a heuristic, but beautiful, physical argument similar
that used by Landau and Lifshitz@27# to derive shell theory.
For a tubule of diameterRG , the nonzero sheargy elasticity
leads to an effectiveRG-dependent bending rigidity modulu
which will be L' and Ly dependent if the tubule diamete
depends onL' andLy . This can be seen as follows~see Fig.
8!: If we bend the tubule with some radius of curvatureRc

-

i-

FIG. 8. Illustration of the physical mechanism for the enhan
ment of the bending rigidityk by the sheargy elasticity. To bend a
polymerized tubule of thicknessRG into an arc of radiusRc requires
an RG /Rc fraction of bond stretching and therefore costs elas
shear energy, which when interpreted as bending energy leads
length-scale-dependent renormalization of the bending rigidityk
and to the Ward identity, Eq.~6.67!, as described in more detail in
the text.



in

a
th
e
re

rg

ee

ub

ra
m
h

n

se

a
,

m-

on-
sly.

lf-

le

-

y

*
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@RG , simple geometry tells us that this will induce a stra
«;]yu along the tubule axis of order«;RG /Rc , since the
outer edge of the tubule must be stretched by this factor,
the inner edge compressed by it, in order to accomplish
required bend. This strain induces an additional elastic
ergy density~i.e., additional to those coming from the ba
k), namely, those coming from theu elastic energy. This
goes like gy(Ly ,L')«2 5gy(Ly ,L')„RG(Ly)/Rc…

2. Inter-
preting this additional energy as an effective bending ene
densityky(L' ,Ly)/Rc

2 , leads to theeffectivebending modu-
lus ky(L' ,Ly),

ky~L' ,Ly!;gy~L' ,Ly!RG~L' ,Ly!2. ~6.66!

Inserting the scaling formsky(L' ,Ly)5Ly
hkSk(Ly /L'

z ),

gy(L' ,Ly)5Ly
2huSg(Ly /L'

z ) and RG(L' ,Ly)5L'
n SR(Ly /

L'
z ) into the above expression, we obtain a relation betw

the scaling exponents

2n5z~hk1hu!, ~6.67!

which is exactly the exponent relation one obtains by s
tracting Eq.~6.37! from Eq.~6.38!, and using the Eqs.~6.57!
and ~6.58! for hk andhu , all of which were obtained using
renormalization group arguments.

Since the above physical shell argument is very gene
Eqs. ~6.66! and ~6.67! hold independent of the mechanis
that generates anomalous elasticity. For the case of the p
tom membrane~for D. 3

2), Eq. ~6.66! reveals thatk is not
anomalous because the softening of the shear modulusgy(q)
by thermal fluctuations precisely compensates for the be
ing rigidity produced by the finite diameterRG of the tubule.
Equation~6.67! then correctly predicts for thephantomtu-
bule thathu52n/z, which is consistent with the phantom
tubule resultshu5522D, n5(522D)/4, and z5 1

2. Fur-
thermore, because the anharmonic elasticityVh(q) is irrel-
evant ford.d* ,

hu52n/z ~6.68!

FIG. 9. Schematic graph of the shape exponentn and anoma-
lous bend exponenthk ~for D52). Note the jump discontinuity as
a function of embedding dimensiond, occurring atd5d* '6.
nd
e

n-

y

n

-

l,

an-

d-

is valid, even in a self-avoiding tubule embedded in the
high dimensions.

We note, finally, that all of the exponents must show
jump discontinuity atd* , as shown in Fig. 9. Therefore
unfortunately, an extrapolation frome5112d-expansion in
a truncated model with linear elasticity@3# down to the
physical dimension ofd53 ~which is belowd* ) gives little
information about the properties of a real tubule. The co
putations for a physical tubule must be performed ford
,d* , where both the self-avoidance and anharmonic n
linearities are relevant and must be handled simultaneou
As we discussed above, ford,d* , the eigenvaluelg'

.0,

leading to the flow ofg'( l ) to infinity, which in turn leads to
Vh(q)5gy . Physically this regime ofg'→` corresponds to
freezing out the phononsu, i.e., settingu50 in the free
energyF@hW ,u# in Eq. ~6.13!. This is consistent with our find-
ing that ford,d* , in the effective free energyF@hW # ~with
phonons integrated out!, Eq. ~6.34!, the kernelVh5gy . The
resulting effective free-energy functional for a physical se
avoiding tubule is

F5 1
2 E dD21x'dyHk(]y

2hW )21t(]a
'hW )21 1

4 gy(]yhW )4

1vE dy dD21x'dD21x'8 d~d21![hW ~x',y!2hW ~x'8 ,y#J .

~6.69!

Unfortunately, no controlled perturbative study is possib
for d,d* , since one must perturb ingy around a nontrivial,
strong coupling fixed described byv* 5O(1) and gy* 50.
Furthermore, as we will show below, atthis fixed point there
is no upper critical dimension forgy , i.e., anharmonic non-
linearities are always relevant ford53,d* , for any D.
This strongly contrasts with the Gaussian fixed point~de-
scribing phantom membranes! at which the anharmonic non
linearity is only relevant forD,Duc5

5
2.

In what follows, we will illustrate how one might actuall
attempt to calculate the exponentsn, z, hk , andhu , for d
,d , and enumerate the~many! technical difficulties that

FIG. 10. Feynman graphs that renormalize~a! the anharmonic
elasticitygy , and~b! the bending rigidityk.
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prevent us from doing so, and conclude with a cautionary
of several unsuccessful uncontrolled approximations that
have tried.

In principle, all we need to do is calculate thef i
( i 5t,v,g,k) functions in the recursion relations~6.15!–
~6.19!, which represent the perturbative~‘‘graphical’’ ! cor-
rections to the associated coupling constants. Once t
f -functions are known they give four equations@Eqs.~6.36!–
~6.39!# that uniquely determine the four unknown tubu
shape exponentsn, z, v* , and gy* , as well as the flow of
g'( l ), and therefore completely characterize the long wa
length properties of self-avoiding anharmonic tubules.

Our goal then is to calculatef t(v), f v(v), f k(gy), and
f g(gy). The functionsf g(gy) and f k(gy) are determined by
the diagrammatic corrections togy and k, with the corre-
sponding Feynman diagrams displayed in Fig. 10. The
sults, to leading order ingy , are

f k~gy!5Ckgy
2 , ~6.70!

f g~gy!5Cggy , ~6.71!

whereCk andCg ared- andD-dependent constants, whos
calculation proves to be the sticking point, as we will d
scribe below.

Of course, onced is belowd* , no matter how close it is
to d* , the fixed point that controls the elastic properties
the tubule phase isnot perturbative ingy . That is, we donot
expectgy to be O(d* 2d), but, rather,O(1), even ford*
2d!1. Furthermore, of course, sinced* '6, d* 2d is not
small in the physical cased53 anyway. For both these rea
sons, truncating the calculations off k and f g at the leading
order in gy , as we did in Eqs.~6.70! and ~6.71!, is an un-
controlled, and far from trustworthy approximation. How
ever, we know of no other analytical approach. Furthermo
as we shall see, even this uncontrolled analytic appro
proves intractable: a reliable calculation of the values of
constantsCk andCg has eluded us.

To complete the characterization of the fixed point we c
proceed in two ways. The most direct way is to evaluate
functionsf t(v) and f v(v) simply perturbatively. Luckily~for
us! this was recently done by Bowick and Guitter@3# in a
truncated harmonic tubule model~previously introduced and
studied by us@1#! near d5duc

SA . Although, for the reasons
that we discussed above, these calculations are not rigoro
applicable to a physical tubule ind53,d* ~where anhar-
monic elasticity is certainly important!, for lack of being able
to do any better we extrapolatethesefunctions, computed
neard511 @3#, down tod53,

f t~v !5Ctv, ~6.72!

f v~v !5Cvv. ~6.73!

Now using Eqs.~6.70!–~6.73! in Eqs. ~6.36!–~6.39!, we
obtain four equations for four unknowns (z, n, gy* , andv* ),
expressed in terms constantsCk , Cg , Ct , andCv ~special-
ized here toD52),

2n1z212Ctv* 50, ~6.74!
t
e

se

-

-

-

f

e,
ch
e

n
e

sly

2n23z111Ckgy*
250, ~6.75!

4n23z112Cggy* 50, ~6.76!

21z2n~d21!2Cvv* 50, ~6.77!

where the constantsCt and Cv ~computed in the truncated
tubule model neard5duc

SA for D52) are given by@3#

Ct5
1

8p2 , ~6.78!

Cv5
0.068

p5/2
. ~6.79!

These equations can be uniquely solved forn, z, gy* , andv* .
In terms ofCk andCg , in D52 andd53, we obtain, forn
andz,

n5
1

4Ck
, ~6.80!

z5
1

3
1

1

6Ck
1

Cg

6Ck
, ~6.81!

from which hk and hu can also be determined using th
solution forgy* inside Eqs.~6.57! and ~6.58!,

hk5
3Cg

11Cg12Ck
, ~6.82!

hu5
323Cg

11Cg12Ck
. ~6.83!

Another approach to estimating the tubule shape ex
nents is to rely on the usual accuracy of the Flory theory~in
treating the effects of self-avoidance!, instead of the extrapo
lation of functionsf v(v) and f t(v) down frome-expansion.
Although it is usually not stated this way, in the language
renormalization group, Flory theory amounts to assum
that the graphical corrections tot and tov are the same, i.e.
f v(v* )5 f t(v* ). Using this in Eqs.~6.36! and ~6.39!, we
obtain the Flory result forn,

nF5
D11

d11
, ~6.84!

5 3
4 for d53, D52,

~6.85!

consistent with our earlier analysis in Sec. VI A. Note that
f v(v)5 f t(v) for all v, this result would be exactindepen-
dentof the jump in the other exponentsz, hk , andhu at d* .
That is, it would apply evenbelow d* , and n would not
jump, or be in any way nonanalytic, atd* .

Now, of course, we know from the explicit leading ord
calculation in Ref.@3# that f v(v) doesnot 5 f t(v) exactly.
However, wedo know from that calculation that they ar
quite close, at least to leading order, as illustrated by
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good agreement between Flory theory and the extrapolate
expansion.If this persists down tod53, and to largev, and
our experience with polymers suggests that it will, thenn
may be quite accurately predicted by Flory theory,despite
the complications associated with the onset of anoma
bend elasticity atd* .

Using the Flory value forn @Eq. ~6.84!# inside Eqs.~6.75!
and ~6.76!, together with the diagrammatic corrections tok
andgy given in Eqs.~6.70! and~6.71!, we obtain two equa-
tions ~specialized toD52)

6/~d11!23z111Ckgy*
250, ~6.86!

12/~d11!23z112Cggy* 50, ~6.87!

which, for d53, give

z5
4

3
1

Cg
2

6Ck
2

Cg~Cg
216Ck!1/2

6Ck
. ~6.88!

Now, at least in this uncontrolled approximation of tru
cated perturbation theory at one loop order, it seems tha
are left with the straightforward task of calculating the co
stantsCk andCg . Alas, things are not so simple, for reaso
that are undoubtedly connected with the fact thatd* is not
perturbatively close toduc

SA , which is the only dimension
about which one can do a genuinely controlled approxim
tion @1,3#, and the much more surprising fact that, eve
thoughe I[

5
2 2D is only 1

2 ~for D52), this e I expansion in
intrinsic dimension, as we will show, is demonstrablyex-
tremely unreliable, giving qualitatively different answers,
such as areduction, rather than an increase ofk due to
fluctuations. Our unsuccessful~but heroic! attempts to calcu-
late Cg andCk were as follows.

~I! Calculate them in ane I[
5
22D expansion for aphan-

tommembrane, then use these same constantsCg andCk for
the real, self-avoiding membrane. This approach obviou
makes many errors, since, by the time we get down

d* ( 5
2 ), the correlation functions of the true, self-avoidin

membrane are already quite different from those of the ph
tom membrane, due to the effects of self-avoidance. Furt
more, these effects are particularly pronounced for intrin

dimensionsD5 5
2 , sinceduc

SA( 5
2)5`, as illustrated in Fig. 7.

Nonetheless, since no other analytical calculation is av
able, we attempted thise I[5/22D expansion. However, the
results made no physical sense: we found anegativehk , i.e.,
a downwardrenormalization ofk. The detailed calculations
are virtually identical to those for the renormalization ofk at
the tubule-to-crumpled phase transition, which are descri
in Sec. VII. We note here simply that the origin of this neg
tive contribution tok is a negative region of the real-spa
correlation function G(x' ,y)5C(x' /y2)1/4Y(x' /y2), as
given by Eq.~7.31!. The integrandx5/4Y3(x) in thex integral
of Eq. ~7.37! has a negative region which, though narro
actually overwhelms the positive contribution tohk from the
much longer, but smaller, tail, as we have verified by dir
numerical integration@38#.

This negative region is purely an artifact of calculating
a fractional intrinsic dimensionD5 5

2. In D52 for a phan-
tom membrane, where there is no relevant anomalous e
s

e
-

-

ly
o

n-
r-

ic

il-

d
-

,

t

s-

ticity for hW , and hence we can calculatehW -hW correlation func-
tions exactly, we find the analog of Eq.~7.31! is

G~x,y!5E dqxdqy

~2p!2

eiqxx1 iqyyqy
2

qx
21qy

4
, ~6.89!

5
1

4~puxu!1/2
e2y2/~4uxu!, ~6.90!

which, unlike the analogous correlation function inD5 5
2,

Eq. ~7.31!, is positive definite. Thus, the anomalous cont
bution to k in D52 will also be positive, as we expect o
physical grounds@i.e., the shell theory argument summariz
in Eq. ~6.66!#, while the 5

22D expansion isqualitatively
wrong in predicting a negative renormalization ofk. Clearly,
it cannot be trusted quantitatively either, and is, in fact,
tally useless.

~II ! Direct, uncontrolled RG inD52. Now, we at least
obtain qualitatively correct upward renormalization ofk.
However, here we have a different problem, that appear
any perturbative calculation away from an upper critical d
mension ~and is usually ‘‘swept under the rug’’!: even
though D52 would not,a priori, appear to be far below
D5 5

2, it is, in the sense that graphs thatonly diverge loga-
rithmically in D5 5

2 divergeextremelystrongly in D52. In
particular, following very closely the manipulations that le
to Eq. ~7.35!, we find a contribution tok of the form

dk5c1E
0

c2qy
21

y dyE
0

`

dx
e23/~4x!

x3/2
, ~6.91!

wherec1 is a well-determined constant that we could calc
late, andc2 is anarbitrary constant which depends on pre
cisely how the infrared divergence of the above integra
cut off with qy . This arbitrary constant is the problem:if the
integral equation~6.91! had diverged logarithmically, the
precise value of the constantc2 would be unimportant~it
would just lead to a finite additive constant!. But, since the
integral in Eq.~6.91! diverges so strongly@like (c2 /qy)

2] in
D52, it is extremelysensitive to the precise value ofc2,
which we haveno clueas how to choose. Thus we haveno
ability to predicthk at all by this approach. This strong d
vergence indicates that in this senseD52 is quite far from
D5 5

2, andanykind of perturbative approach, even to simp
calculating one loop constants likeCg andCk , is doomed.

C. Gaussian variational theory of self-avoiding tubules

Here we study the effects of self-avoidance within t
tubule phase using the Gaussian variational method, wh
was previously applied to the study of self-avoidance
crumpled isotropic membranes@21,22# and in polymers@37#.
It is important to emphasize that both Flory theory and
Gaussian variational method are uncontrolled approxim
tions in that there is no way to estimate and reduce the e
systematically.

We begin with the effective Hamiltonian that describ
the long wavelength behavior of the tubule ford,d* ,
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H5 1
2 E dD21x'dy@k~]y

2hW !21t~]a
'hW !21 1

4 gy~]yhW !4#

1vE dy dD21x'dD21x'8 d~d21!@hW ~x',y!2hW ~x'8 ,y!#,

~6.92!

where, in contrast to other sections, we use the notationH to
distinguish the long wavelength effective Hamiltonian~the
free energyfunctional! from the actual free energyF. Com-
putation of correlation functions in the presence of the s
avoiding nonlinearity cannot be done exactly. However,
can replace the HamiltonianH, Eq. ~6.92!, by a variational
HamiltonianHv , quadratic in the fieldshW (x',y), which al-
lows exact calculations of any correlation function. Follo
ing the standard variational procedure, we then pick
‘‘best’’ form of this variational Hamiltonian, where by
‘‘best’’ we mean that it minimizes an upper bound on t
true free energyF @39#:

F<F̃[^H2Hv&v1Fv . ~6.93!

We take our variation ansatz Hamiltonian to be

Hv5 1
2 E dkyd

D21k'

~2p!D
Gv~k',ky!uhW ~k',ky!u2, ~6.94!

where Gv(k',ky) is the variational kernel to be optimize
over. Note that because of anisotropy intrinsic to the tub
Gv(k',ky) is not rotationally invariant as it is for the analo
gous analysis of the crumpled phase.

We now compute the right-hand side of Eq.~6.93!, and
minimize it overGv(k',ky),

^H2Hv&v5
A

2Ek
@kky

41tk'
2 2Gv~k',ky!#^uhW ~k',ky!u2&v

1
gy

8 Ex
^~]yhW !4&v

1vE
x
^d~d21!@hW ~x',y!2hW ~x'8 ,y!#&v , ~6.95!

whereA5LyL'
D21 is the ‘‘area’’ of the membrane, and w

defined *x[*dy dD21x'dD21x'8 , and *k[*dkyd
D21k' /

(2p)D. The above averages are easily evaluated w

^uhW (k',ky)u2&v5(d21)/Gv(k) and ^d&v[^d (d21)@hW (x',y)
2hW (x'8 ,y)#&v given by

^d&v5K E dd21qW

~2p!d21
eiqW •@hW ~x',y!2hW ~x'8 ,y!#L

v

,

5E dd21qW

~2p!d21
e2q2K~ ux'2x'8 u!,

5
1

~2p!d21 S p

K~ ux'2x'8 u!D
~d21!/2

, ~6.96!

where
f-
e

e

,

h

K~ ux'u!5
1

2~d21!
^uhW ~x',0!2hW ~0',0!u2&v ,

5E
k

@12cos~k'•x'!#

Gv~k!
, ~6.97!

and in Eq.~6.96! we used the Fourier representation of t
d21-dimensionald function.

Putting all this together, for the right-hand side of E
~6.93! we obtain

F̃

~d21!A/2
5E

k
S kky

41tk'
2

Gv~k!
21D 1

gy~d11!

4~d21! S E
k

ky
2

Gv~k! D 2

1
4v

~2p!d21~d21!
E dD21x'S p

K~x'! D ~d21!/2

1E
k
ln@Gv~k!#, ~6.98!

which, when minimized with respect toGv(k), dF̃ /dGv(k)
50, gives an integral equation

Gv~kW !5kky
41tk'

2

2
2v

~4p!~d21!/2E dD21x'@12cos~k'•x'!#

K~x'!~d11!/2
. ~6.99!

The only effect of the anharmonic elasticity termgy is to
generate an upward renormalization of the effective tens
along they axis,

dty5
gy~d11!

2~d21!
E

k

ky
2

Gv~k!
. ~6.100!

Since we must choose therenormalizedtension along the
extended tubule axis (y) to be exactly zero in order to trea
the free tubule, all of the anharmonic elastic effects disapp
in this Gaussian variational approximation. That is, to mo
a tubule with free boundaries correctly, we should ha
started with an elastic Hamiltonian with a bare, negative t
sion piece that exactly canceled the thermally genera
positive contribution in Eq.~6.100!.

The simultaneous integral equations Eqs.~6.97! and
~6.99! determineGv(k) and K(x'). At long length scales
they are solved byK(x');x'

2n , where, from Eq.~6.97!, we
see thatK(x'5L') is proportional to the square of the ra
dius of gyration or the tubule thickness that we are after, a
hence then that solves these coupled nonlinear integ
equations will be the Gaussian variational prediction for
radius of gyration exponent as well. We substitute this sc
ing ansatz into Eq.~6.99! for Gv(kW ), and find that, while for
d.duc

SA the self-avoidance is irrelevant andn5(522D)/4
~as found in Sec. VI A!, for d,duc

SA these integral equation
can only be solved if thetk'

2 term in Eq.~6.99! is exactly
canceled by a part coming from the integral in the last te
the resulting propagator takes the form

Gv~k!5kky
41 ṽk'

~d11!n2D11 , ~6.101!
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where ṽ}v is an effective self-avoiding interaction param
eter. Substituting this form into Eq.~6.97! for Gv(k), and
requiring self-consistency with our original ansatzK(x')
;x'

2n , gives

x'
2n}E dD21q'dqy@12cos~k'•x'!#

kky
41 ṽk'

~d11!n2D11
. ~6.102!

Making the change of variablesq'[ q̃' /ux'u and qy

[ q̃y /ux'ua, with a5@n(d11)2D11#/4 reveals that the
right-hand side of Eq.~6.102! is proportional tox'

g , with

g512D13a,

5
7~12D !13n~d11!

4
. ~6.103!

To satisfy the self-consistent conditions Eq.~6.102!, g
must be equal to 2n. The resulting simple linear equation fo
n has a solution@for d,duc

SA(D)],

n5
7D27

3d25
, ~6.104!

which for the physical case ofD52 gives

n5
7

3d25
for d,11, ~6.105!

5 1
4 for d>11. ~6.106!

We observe thatn(d54)51, and therefore~according to
the Gaussian variational approximation! the tubule is no
longer crumpled along the' direction. This suggests that th
tubule phase is unstable to the flat phase in embedding
mensionsd,4 ~which unfortunately includes the physic
case ofd53). However, as discussed in Sec. I, the Gauss
variational method is an uncontrolled approximation. It pro
ably does give the correcttrends of, e.g., exponents with
dimensionalityd. However, the variational approach is ve
close, in spirit and technically, to the larged expansion
methods, and therefore it is intrinsically unable to obtain
smalld dependence correctly. It is therefore difficult to pla
any faith in the actual values of exponents, particularly wh
the value ofn at small d actually determines whether th
tubule phase survives or not.

We believe that this Gaussian variation theory is incorr
in predicting that the tubule phase does not exist in the p
ence of self-avoidance ind53, and we reiterate our earlie
observation that both Flory theory@1# and thee5112d ex-
pansion @3# predict that the tubule phase survives se
avoidance. Since both these latter approaches agree
closely with each other, and since, furthermore, thee expan-
sion is the only controlled approximation, we are far mo
inclined to trust them than the uncontrolled Gaussian
proximation, which agrees with neither. The final determin
tion of whether or not the tubule phase survives se
avoidance will, of course, rest upon simulations a
experiments, both of which we hope our analytic wo
stimulates.
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VII. FLUCTUATION EFFECTS
AT CRUMPLED-TO-TUBULE

AND TUBULE-TO-FLAT TRANSITIONS

The transition from the crumpled-to-flat phase in isotrop
membranes has been previously studied@24#, and is pre-
dicted to be driven first order by fluctuations for embeddi
dimensionsd,dc5219. As can be seen from Fig. 1, th
direct transition is very special for anisotropic membranes
is easy to see that any path finely tuned to pass through
tetracritical point will undergo a direct crumpled-to-flat tra
sition identical to that of isotropic membranes, discussed
Ref. @24#.

Here we focus on the new transitions, crumpled-to-tub
and tubule-to-flat, which are generic for membranes withany
amount of anisotropy. As we discussed at the end of Sec.
there are two possible mean field phase diagram topolo
depending on the values of microscopic elastic moduli of
membrane. However, for the crumpled-to-tubule transit
there is no difference. In this section we first study t
crumpled-to-tubule transition for a phantom membrane us
a detailed renormalization group analyses. We then st
both the crumpled-to-tubule and tubule-to-flat transitions
ing scaling theory, incorporating the effects of both the a
harmonic elasticity and self-avoidance. We postpone
more technically challenging renormalization group analy
of the phantom tubule-to-flat transition@41# and renormaliza-
tion group analysis of crumpled-to-tubule and tubule-to-fl
transitions for self-avoiding membranes@33# for future pub-
lications.

A. Renormalization group analysis
of crumpled-to-tubule transition

We start out with the general free energy defined in E
~2.1!, ignoring for now the self-avoiding interaction. Withou
loss of generality we will study the transition from th
crumpled to they-tubule phase. As discussed above, in me
field theory, this transition occurs whenty→0 from above,
while t' remains finite and positive. Hence, simple pow
counting on the quadratic part of the free energy leads
anisotropic scaling at the transition withq'}qy

2 . Therefore,

the only relevant terms quadratic inrW near the transition are
the bending rigidity along they direction@ky(]y

2rW)2#, and the

surface tension terms along they and' directionsty(]yrW)2

and t'(]a
'rW)2, respectively. The corresponding nonintera

ing propagator at the transition is

^r i~q!r j~2q!&5
d i j

t'q'
2 1tyqy

21kyqy
4
[C~q!d i j . ~7.1!

The anisotropic scaling dictated by this noninteracti
propagator at the transition (ty50) leads to significant sim-
plification of the interaction term in the free energy. Keepi
only the dominant nonlinearity, we obtain

F@rW~x!#5 1
2 E dD21x'dyFky~]y

2rW !21t'~]a
'rW !21ty~]yrW !2

1
uyy

2
~]yrW•]yrW !2G . ~7.2!
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The critical properties of the crumpled-to-tubule transiti
can be obtained by applying scaling theory and the renorm
ization group to this free energy exactly as we did earlier
treating fluctuations in the tubule phase itself. In this ca
‘‘lengths’’ means intrinsic coordinatesx5(x' ,y), and the
‘‘fields’’ are the extrinsic positionsrW(x). Because of the
strongscalinganisotropy of the quadratic pieces of the fr
energy, we rescalex' andy anisotropically,

x'5x'8 el , ~7.3!

y5y8ezl, ~7.4!

and rescale the ‘‘fields’’ according to

rW~x!5ex l rW8~x8!. ~7.5!

Under this transformation,

ky~ l !5kye
~D2123z12x!l , ~7.6!

t'~ l !5t'e~D231z12x!l . ~7.7!

Requiring that bothky andt' remain fixed under this resca
ing ~zeroth order RG transformation! fixes the ‘‘anisotropy’’
exponentz and the ‘‘roughness’’ exponentx ~which is the
analog ofn for the tubule phase!:

z5 1
2 , ~7.8!

x5~ 5
22D !/2 . ~7.9!

Although this choice keeps the quadratic~in rW) part ofF, Eq.
~7.2!, unchanged, itdoeschange the quartic piece:

uyy~ l !5uyye
~D2123z14x!l , ~7.10!

5uyye
~5/22D !l , ~7.11!

where in the second equality we have used Eqs.~7.8! and
~7.9! for z and x. We see that, forD, 5

2, uyy grows upon
rescaling. Physically, this means that its effects become m
important at longer length scales. At sufficiently long leng
scales, it completely invalidates the harmonic elastic the
and the naive perturbation theory in the nonlinearityuyy
around it, even for arbitrarily small couplinguyy . Simple
additional anisotropic rescaling ofx'5ax'8 and y5by8,
with b5(t' /ky)

1/2a2, which rescalesky andt' to 1, reveals
that the effective coupling constant of the nonlinearity
uyy /ky . This, together with Eq.~7.11!, predicts that the
characteristic length scaleL'

nl beyond which thedimension-
lesscoupling constant becomes of order 1 and the harmo
elastic theory and perturbation theory~around it! break down
is

L'
nl5S ky

uyy
D 1/~5/22D !

. ~7.12!

To analyze the new behavior that prevails on evenlonger
length scales requires a full-blown renormalization gro
analysis.
l-
n
e,

re

ry

ic

p

Such an analysis@36# will lead to corrections to the
simple rescaling ofky , t' , andty , due to the nonlinearities
~in this caseuyy , as discussed above!. These corrections can
be absorbed into ‘‘anomalous’’ exponentshk , h t , anddu,
defined by the large renormalization group ‘‘time’’ (l→`)
limits of ky( l ), t'( l ), andty( l ), respectively:

ky~ l !5kye
~D2123z1zhk12x!l , ~7.13!

t'~ l !5t'e~D231z1h t12x!l , ~7.14!

ty~ l !5tye
~D212z2du12x!l[tye

l tl .
~7.15!

The exponentl t defined above is the thermal eigenvalue
the reduced temperature~surface tension along they direc-
tion! which is an inverse of the correlation length expone
along the' direction ~see below!. Requiring thatky and t'
remain invariant under the renormalization group transf
mation determines the values the anisotropy exponentz and
the field rescaling exponentx,

z5
22h t

42hk
, x5

1024D1hk~D231h t!23h t

822hk
,

~7.16!

which, as quoted above in Eqs.~7.8! and ~7.9!, reduce toz

5 1
2 and x5( 5

22D)/2, for hk5h t50, as is valid at zero
order in perturbation theory inuyy .

Once the values ofh t , hk , andx at the critical point are
determined, the renormalization group gives a relation
tween correlation functions at or near criticality~small ty)
and at small wave vectors~functions that are difficult to
compute, because direct perturbation theory is divergent! to
the same correlation functions away from criticality and
large wave vectors~functions that can be accurately com
puted using perturbation theory!. For example, the behavio
of the correlation lengths near the transition can be dedu
in this way:

j'~ ty!5elj'~ tye
l tl !, ~7.17!

jy~ ty!5ezljy~ tye
l tl !, ~7.18!

where in the above we assumed that a critical fixed po
exists and all other coupling constants have well-defined
ues at the fixed point. Using the above equations fortye

l tl

'1, we obtain

j'~ ty!'aty
2n' ,

~7.19!

jy~ ty!'aty
2ny ,

wherea'j(1) is the microscopic cutoff, and

n'5
1

l t
5

42hk

2~22h t22du!2hk~22h t2du!
, ~7.20!

ny5zn' . ~7.21!

We now compute the anomalous exponents to lowest n
zero order ine, wheree5 5

22D. As usual in thee expansion,
the order at which a given graphical correction enters
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perturbation theory is equal to the number of loops in
associated Feynman graph. We split the fieldrW(x) into short
and long wave vector partsrW(x)5rW,(x)1rW.(x) and inte-
grate over the fast fieldsrW.(x). Diagrammatically this leads
to one-loop corrections touyy and ty . There are no correc
tions toky to first order ine, i.e., hk5O(e2). Furthermore,
since the interactionuyy always carries a factor ofqy with
every field rW, the t' tension remains unrenormalized, an

h t50 to all orders, implying z5 1
21O(e2) and x5( 5

2

2D)/21O(e2).
The first two diagrams in Fig. 11, followed by the resc

ing introduced above~necessary to restore the original U
cutoff!, lead to the one-loop recursion relations foru
5(K3/2/A2)uyy /(ky

5/4t'
3/4) and ty , respectively,

]u

] l
5eu2~d18!u2, ~7.22!

]ty

] l
5@12~d12!u#ty , ~7.23!

where e5 5
22D, and K3/2 is the surface of area of

3/2-dimensional sphere divided by (2p)3/2. As usual, in the
above, we also redefinedty to be the reduced temperatur
measured from its true value at the transition~which in mean
field theory starts out at 0, but is shifted to a negative va
by fluctuations!. Note that, in contrast to the familiare54
2D expansion for critical phenomena, for whiche51 in the
physical caseD53, here we havee5 1

2 in the physical case
D52. Hence, our one-loop expansion should be quan
tively more accurate by a factor ofe2254, than the 42D

FIG. 11. Feynman graphs that renormalize~a! the nonlinearity
uyy , ~b! the tensionty , and~c! the bending rigidityky .
e

e

-

expansion at the same order. Thus, we expect our one-
values forn' andny to be accurate to60.02.

Examining Eq.~7.23!, we observe that forD,Duc5
5
2,

~i.e., for e.0) the Gaussian fixed point is unstable, and t
critical properties of the crumpled-to-tubule transition a
characterized by a nontrivial fixed point with a fixed poi
valueu* of u given by

u* 5
e

d18
. ~7.24!

Note that, in contrast to the treatment of crumpled-to-fl
transition in isotropic membranes@24#, where the critical
point was only stable for an unphysically large value of t
embedding dimensiond.219, the critical point characteriz
ing the crumpled-to-tubule transition found here is stable
all d.

Equation ~7.23! can be easily integrated once the fixe
point valueu* , Eq. ~7.24!, is inserted foru; comparison
with the general equation~7.16! then givesl t ,

l t512S d12

d18D e, ~7.25!

which, upon using Eqs.~7.20! and~7.21! gives for a physical
membrane (D52, d53)

n''1.227, ~7.26!

ny'0.614. ~7.27!

The hk exponent toO(e2) is determined by the diagram
in Fig. 11~c!. Evaluating this diagram in real space and th
Fourier transforming, we find that this contributes to the fr
energy

dF5216u2~d12!E
q
qy

2urW~q!u2G~q!, ~7.28!

where

G~q![E d3/2x'dy eiq•xG3~x!, ~7.29!

with, in turn,

G~x',y!5E d3/2q'dqy

~2p!5/2

eiq'•x'eiqyyqy
2

q'
2 1qy

4
, ~7.30!

where we have rescaled lengths so thatky5t'51.
After a contour integral overqy , and an angular integra

*0
pdu(sinu)(D22)eiq'•x', we obtain

G~x',y!5227/4p23/4y22S x'

y2 D 1/4

YS x'

y2 D , ~7.31!

where we have defined

Y~x![E
0

`

du u1/4J21/4~xu!e2Au/2cos~Au/21p/4!.

~7.32!
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1858 57LEO RADZIHOVSKY AND JOHN TONER
Now going back to Eq.~7.28! we observe that theq50
piece ofG(q) contributes to theqy

2urW(q)u2 part of F, addi-
tively renormalizingty which corresponds to the usual inco
sequentialTc ~critical tension! shift. The orderqy

2 piece of
G(q) renormalizesky . We define

G~q!5G~0!2 1
2 qy

2B~qy!, ~7.33!

where

B~qy![E
L21,uyu,qy

21
dy d3/2x'y2G3~x',y!. ~7.34!

Note that the infrared cutoff on the integral overy is qy
21 .

This integral diverges logarithmically asqy→0. We can
identify the coefficient of the logarithm withhk in the ex-
pressionky(qy)}qy

2hk .
To extract this logarithmic divergence, we make a chan

of variables in the integralux'u[xy2, and find

B~qy![2
1

213/4p3/2G~3/4!
E

L21

qy
21dy

y E
0

`

dx x5/4 Y3~x!,

~7.35!

where we used the fact that the surface area o
3
2-dimensional sphere is 2p3/2/G( 3

4), and took into accoun
the factor of 2 coming from the fact that the original integ
over y extends over bothy.0 andy,0.

Putting all of the above together and evaluating the co
ficient of the ln(qy) at the fixed point value ofgy* from Eq.
~7.24!, we obtain

hk5
C~2!~d12!

8~d18!2 e2, ~7.36!

where

C~2![223/4G~ 3
4!E

0

`

dx x5/4 Y3~x!. ~7.37!

The value ofC(2) has been calculated numerically@40# to
be C(2)'21.16660.001. Using this value,e5 1

2, and
d53 in Eq. ~7.36!, we find thathk is very small,

hk~D52, d53!'20.0015. ~7.38!

As noted earlier in our discussion of the tubule pha
itself, we do not trust this negative value ofhk , but, rather,
believe it to be an artifact of the peculiar negative regi
that appears in the correlation functionG(x' ,y) in D5 5

2.
We expecthk to be positive, but still quite small, at th
phantomtubule-to-crumpled transition. Given the smallne
of hk and e, and the vanishing ofh t , the exponents com
puted here to first order ine are expected to be very accurat

B. Scaling theory of crumpled-to-tubule
and tubule-to-flat transitions

We will now incorporate the effects of self-avoidance
these transitions. We have not yet done a full renormal
tion group analysis of this problem~which must includeboth
e

a

l

f-

e

e

s

.

-

the elastic and self-avoiding interaction nonlinearities! @33#,
and limit ourselves here to discussing scaling theory and
Flory approximation.

Near the crumpled-to-tubule transition, for square me
branes of internal sizeL, we make the following genera
scaling ansatz for the extensionsRy andRG of the membrane
along and orthogonal to the tubule axis, respectively:

RG,y5Lnct
G,y

f G,y~ tyL
f!,

}H t
y

g1
G,y

Lnc, ty.0, L@jct

Lnct
G,y

, L!jct

utyug2
G,y

Ln t
G,y

, ty,0, L@jct ,

~7.39!

where subscriptst, c, and ct refer to tubule, crumpled, an
tubule-to-crumpled transition, respectively, andjct}utyu21/f

is a correlation length for the crumpled-to-tubule transitio
ty5(T2Tct)/Tct , Tct is the crumpled-to-tubule transitio
temperature, andty.0 corresponds to the crumpled phase

Note that we have built into the scaling laws the fact th
bothRy andRG scale likeLnc in the crumpled phase, withnc
the radius of gyration exponent for the crumpled pha
~which, as noted earlier, is the same for anisotropic and
tropic membranes!. Due to the extended nature of the tubu
phase,n t

y51, of course. The anisotropy is manifested in t
crumpled phase only through the different temperature
pendences ofRG and Ry . The former of these vanishes a
ty→01 ~since the radius of gyration in the tubule phase
much less than that in the crumpled phase, sincen t,nc),
which impliesg1

G.0, while the latter diverges asty→01,
since the tubule ultimately extends in that direction, whi
implies g1

y ,0.
Note also that our Eq.~7.39!, and, in particular, the fac

that RGÞRy even above the crumpled-to-tubule transitio
~i.e., in thecrumpledphase!, implies a spontaneous breakin
of rotational invariance even in the crumpled phase. T
seemingly bizarre~but correct! result is actually not all that
unfamiliar: polymers, which are always crumpled, noneth
less assume, on average, nonspherical shapes@42#, as can be
seen, for example, by looking at the ratio of the avera
maximum and minimum eigenvalues of the moment of in
tia tensor. Our Eq.~7.39! for ty.0 is only a little more
surprising, since it predicts an aspect ratioRy /RG that actu-
ally divergesasT→Tct

1 , and the membrane begins to exte
into a tubule configuration.

The exponentsg1/2
G,y defined in above equation obey th

scaling laws

g1
G,y5

nc2nct
G,y

f
, ~7.40!

g2
G,y5

n t
G,y2nct

G,y

f
. ~7.41!

As always, these scaling laws follow from requiring that t
generalized scaling form matches on to known results in
appropriate limits.

From Flory theory, we can derive the values of the critic
exponents in Eq.~7.39!, as we have already derived the e
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ponentsn t and nc characterizing the tubule and crumple
phases, simply by being more careful about temperature
pendent factors in that derivation. Again, we start by estim
ing the total self-avoidance energy, Eq.~2.1!, in the tubule
phase~i.e., ty,0) as ESA'Vr2. Now, however, we very
carefully write the volumeV in the embedding space occu
pied by the tubule asV'RG

d21Ry . Writing

Ry5zyLy , ~7.42!

as we did earlier in our discussion of mean field theory in
absenceof self-avoidance, and usingr5M /V for the em-
bedding space density of the tubule, and again using the
that the tubule massM'L'

D21Ly , we see that

ESA'v
LyL'

2~D21!

zyRG
d21

. ~7.43!

Using this estimate of the self-avoidance energy in E
~2.1!, and estimating the other terms in that expression
scaling, we obtain the full Flory theory for the tubule pha
with all temperature dependent effects taken~admittedly
crudely! into account:

EFL5F tyzy
21uyyzy

41t'S RG

L'
D 2GL'

D21Ly1v
LyL'

2~D21!

zyRG
d21

.

~7.44!

Minimizing this overRG , we obtain

RG'L
'

n tS v
t'zy

D 1/~d11!

, ~7.45!

where, as we found earlier,n t5 (D11)/(d11), but now we
have the singular temperature dependence ofRG near the
crumpled-to-tubule transition explicit through the presen
of the zy term. Inserting this expression forRG into Eq.
~7.44!, we find

EFL5S tyzy
21uyyzy

4

1t'
~d21!/~d11!S v

zy
D 2/~d11!

L'
2 2~d2D !/~d11!DL'

D21Ly .

~7.46!

The exponents defined by Eq.~7.39! can now be obtained
by minimizing EFL in Eq. ~7.46! with respect tozy , which
amounts to balancing two of the three terms inEFL , which
two depending on whether one is interested in the crump
phase (ty.0), the tubule phase (ty,0), or the transition
between them (ty50).

In the crumpled phasety.0; as a result, the order param
eterzy vanishes in the thermodynamic limit, allowing us
neglect the quarticzy

4 term relative to the quadraticzy
2 one.

Balancing the remaining two terms

tyzy
2't'

~d21!/~d11!S v
zy

D 2/~d11!

L'
2 2~d2D !/~d11! , ~7.47!

we obtain
e-
t-

e

ct

.
y
,

e

d

zy'S v2t'
d21

ty
d11 D 1/@2~d12!#

L'
2 ~d2D!/~d12! . ~7.48!

Using this expression forzy inside Eq.~7.42! for Ry gives,
for a square membrane (Ly5L'5L),

Ry'~v2t'
d21!1/2~d12!ty

21/2~d11!~d12!L'
~D12!/~d12! ,

~7.49!

which, after comparing with the general form forRy , Eq.
~7.39!, gives

nc5
D12

d12
, ~7.50!

g1
y 52

d11

2~d12!
, ~7.51!

Eq. ~7.50! being a well-known Flory result for the radius o
gyration exponentnc for a D-dimensional manifold, embed
ded in d dimensions@30–32#, and g1

y new and special to
anisotropic membranes. Furthermore, insertingzy , Eq.
~7.48! inside Eq.~7.45! for RG , we obtain

RG'~v ~d13!/@~d12!~d11!# t'
2 ~d15!/@2~d12!~d11!#!

3ty
1/@2~d12!#L'

~D12!/~d12! , ~7.52!

which, not surprisingly, gives the same expression fornc as
in Eq. ~7.50!, and predicts

g1
G5

1

2~d12!
. ~7.53!

g1
y Þg1

G supports our earlier claim that even the crumpl
phase spontaneously breaks rotational invariance in the
bedding space. It does so gently by having the ident
growth ~for square membranes! of RG and Ry with L, but
exhibiting anisotropy via the prefactors, with the rat
Ry /RG diverging as the crumpled-to-tubule transition is a
proached.

The tubule phase is characterized byty,0 and a finite
order parameterzy.0. Therefore in this phase, the term pr
portional tot'

(d21)/(d11) in EFL , Eq. ~7.46!, clearly becomes
negligible relative to the first two terms whenL'→`. There-
fore, we can neglect that term for a sufficiently large me
brane ~i.e., a membrane larger than the critical correlati
lengthjcr). Minimizing the remaining first two terms inEFL

therefore giveszy}Autyu, ~independent ofL') as in mean
field theory in the absence of self-avoidance. Inserting t
insideRy , Eq. ~7.42!, and comparing with the general sca
ing form for Ry , implies for a square membrane

n t
y51, ~7.54!

g2
y 5 1

2 . ~7.55!

Using this in the earlier expression Eq.~7.45! for RG , we
obtain the last line of Eq.~7.39!, with
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n t
G5

D11

d11
, ~7.56!

g2
G52

1

2~d11!
. ~7.57!

Finally, right at the crumpled-to-tubule transition,ty50
and we must balance the last two terms inEFL , Eq. ~7.46!.
Minimizing EFL over zy , at the transition we find

zy}L'
2 ~d2D !/~312d! , ~7.58!

which, when inserted into Eq.~7.42! for Ry , implies for a
square membrane that

Ry}L ~D1d13!/~312d! ~7.59!

right at the transition. This leads to

nct
y 5

D1d13

2d13
~7.60!

for a square membrane. Using Eq.~7.58! for zy in Eq. ~7.45!
for RG gives, right at the transition,

RG}L
'

nct
G

, ~7.61!

with

nct
G5n t1

1

d11 S d2D

312dD , ~7.62!

5
2D13

2d13
. ~7.63!

The scaling relations, Eqs.~7.40! and ~7.41!, quoted above,
then give

f5
2~d2D !

2d13
, ~7.64!

and are reassuringly consistent with our independent ca
lations of exponentsg1,2

G,y , nc , n t
G,y , and nct

G,y , given in
Eqs. ~7.51!, ~7.53!, ~7.55!, ~7.57!, ~7.50!, ~7.54!, ~7.56!,
~7.60!, and ~7.63!, above. For the physical case of a tw
dimensional membrane embedded in a three-dimensi
space (D52, d53),

nc5 4
5, ~7.65a!

nct
G5 7

9, ~7.65b!

nct
y 5 8

9, ~7.65c!

n t5
3
4, ~7.65d!

g1
G5 1

10, ~7.65e!

g1
y 52 2

5, ~7.65f!

g2
G52 1

8, ~7.65g!

g2
y 5 1

2. ~7.65h!

f5 2
9. ~7.65i!
u-

al

Note that the signs of theg1/2
G,y imply that RG shrinks as

the crumpled-to-tubule transition is approached from abo
and grows as it is approached from below, whileRy does the
opposite. Note also that the crumpled-to-tubule transition
quite rounded by finite size effects, even for large me
branes, because of the small value of the crossover expo
f, which leads to a large correlation lengthjct(ty). Taking
an example of aL510 mm membrane with lattice constan
a510 Å, we find that the crumpled-to-tubule transition
rounded at a reduced temperaturety'(L/a)2f'0.13, while
our hypothetical simulation of a 104 particle net experience
rounding at ty'0.36. Thus the transition may not appe
sharp experimentally or in simulations, even though it is,
principle, in the thermodynamic limit.

The singular parts of other thermodynamic variables ob
scaling laws similar to that forRG,y, Eq. ~7.39!. For ex-
ample, the singular part of the specific heat per particleCv ,
i.e., a second derivative of the intensive free energy w
respect to temperature, is given by

Cv;
1

LD

]2

]ty
2S 1

2
tyRy

2LD22D , ~7.66!

which, using Eq.~7.39!, leads to the scaling form forCv ,

Cv5Lbg~ tyL
f!,

}H ty
2a1Lb2a1f, ty.0, L@jct

Lb, L!jct

utyu2a2Lb2a2f, ty,0, L@jct ,

~7.67!

where

g~x!'
d2

dx2 @ f y
2~x!#. ~7.68!

Using the exponents characterizingRy derived above, we
obtain

b52nct
y 221f, ~7.69a!

50, Flory theory,
~7.69b!

a1522g1
y 11, ~7.70a!

5
2d13

d12
, Flory theory

~7.70b!

5 9
5 , Flory theory, d53,

~7.70c!

a2522g2
y 11, ~7.71a!

50, Flory theory. ~7.71b!
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This leads to the unusual feature that outside the crit
regime~i.e., for L@jct), the singular part of the specific he
above the crumpled-to-tubule transition vanishes in the th
modynamic limit like L2a1f;L22(d2D)/(d12);L22/5; in
the last expression we have used the Flory estimates o
exponents, evaluated inD52 and d53. Only within the
critical regime does the singular part of the specific heat
particle become nonvanishing asL→`. Similar results were
first found for the direct crumpled-to-flat transition by Pa
zuski, Kardar, and Nelson@24#.

We now turn to the tubule-to-flat~tf! transition. On both
sides of this transition,Ry5Ly3O(1). Therefore only the
other two radii of gyrationRx andRz exhibit critical behav-
ior, which can be summarized by the scaling law

Rx,z5Ln tf
x,z

f x,z~ t'Lf tf!,

}H t
'

g1
x,z

Ln t, t'.0, L@j tf

Ln tf
x,z

, L!j tf

ut'ug2
x,z

Ln f
x,z

, t',0, L@j tf

~7.72!

wheret'5(T2Ttf)/Ttf , t'.0 is assumed to correspond
the tubule phase,j tf }ut'u21/f tf is the correlation length for
this transition, and the exponents obey the scaling relatio

n f
z5z'0.59, ~7.73a!

n f
x51 , ~7.73b!

g1
x,z5

n t2n tf
x,z

f tf
, ~7.73c!

g2
x,z5

n f
x,z2n tf

x,z

f tf
. ~7.73d!

In the above we have taken thex direction to be the new~in
addition toy) extended direction in the flat phase~which is
why n f

x51), andz is the roughness exponent@28# of the flat
phase~quoted for the physical caseD52 andd53), giving
the transverse height fluctuations of thed22 components of
the displacement perpendicular to the flat membrane.

To calculate these exponents, we can use Flory theor
the tubule phase, and at the transition, while in the flat ph
where as discussed above, self-avoidance is irrelevant
simply match onto the scaling theory@28# of the flat phase.
Doing so, we find that Flory theory predictsidenticalbehav-
ior for Rx andRz in the tubule phase and at the transition

n tf
x5n tf

z5
D13

d13
, ~7.74a!

5 5
6 for D52, d53, ~7.74b!

g1
x 5g1

z 52
1

d11
, ~7.74c!

52 1
4 for D52, d53. ~7.74d!
al

r-
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r
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We believe that the identical temperature (t') and scaling
~with L) behavior ofRx andRz as the tubule-to-flat transition
is approached from the tubule side@Eqs.~7.74a! and~7.74c!#
is an artifact of Flory theory and that in factRx@Rz through-
out this region, with the ratioRx /Rz actually diverging as the
transition is approached from above. That is, we expect
in reality n tf

x.n tf
z andg1

x ,g1
z .

In addition, Flory theory predicts

f tf5
2~d2D !

d13
, ~7.75!

5 1
3 for D52, d53. ~7.76!

In the flat phase,g2
x follows from simply minimizing the

mean field free energywithout self-avoidance~since self-
avoidance is irrelevant in the flat phase!, giving

g2
x 5 1

2 , ~7.77!

while matchingRz5Lzut'ug2
z

onto the critical predictionRz

}Ln tf
z

at the correlation lengthL5j5ut'u21/f tf gives

g2
z 5

z2n tf
z

f tf
, ~7.78!

'20.73, ~7.79!

where the first equality is an exact scaling law, while t
second, approximate one uses Flory theory forf tf and n tf

x ,
and the SCSA calculation@28# of z for the flat phase, all
evaluated in the physical caseD52 andd53.

As the tubule-to-flat transition is approached from belo
~the flat phase side! Rx shrinks asRx'ut'u1/2L and Rz in-
creases asRz'ut'u20.73L0.59 with vanishingut'u. Approach-
ing this transition from above~the tubule phase side! Rx and
Rz both extend asRx,z'ut'u21/4L3/4 with vanishingt' to the
L5/6 scaling at the tubule-to-flat critical point.

The singular part of the specific heat again obeys a sca
law,

Cv5Lb tfgtf~ t'Lf tf!,

}H t
'

2a1
tf

Lb tf2a1
tf f tf, t'.0, L@j tf

Lb tf, L!j tf

ut'u2a2
tf
Lb tf2a2

tf f tf, ty,0, L@j tf ,

~7.80!

where, in Flory theory,

a1
tf 5 3

2 , ~7.81a!

a2
tf 50, ~7.81b!

b tf52n tf1f tf2250.
~7.81c!

Thus, again, the singular part of the specific heat vanis
~now like L21/2) in the thermodynamic limit above~i.e., on
the tubule side! of the transition, while it isO(1) and smooth
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as a function of temperature in both the critical regime and
the flat phase.

VIII. SUMMARY AND CONCLUSIONS

In summary, we have studied the effects of intrinsic a
isotropy in polymerized membranes. We found that t
seemingly innocuous generalization leads to a wealth of n
phenomena, most remarkable of which is thatanyamount of
anisotropy leads to a tubule phase which intervenes betw
the previously predicted flat and crumpled phases in an
tropic membranes~see Fig. 1!. We have presented a detaile
theory of the anisotropic membrane focusing on the tub
phase. Considering thermal fluctuations in the tubule ph
we have shown that thephantom tubule phase exhibits
anomalous elasticity, and calculated the elasticity and
exponentsexactly, as summarized in Eqs.~5.15!, ~5.16!,
~5.38!, and ~5.48!. We then considered the physically mo
relevant case of aself-avoiding tubule, finding that self-
avoiding interaction is important for physical dimensiona
ties. Establishing relations between the exponent chara
izing the diameter of the tubule and the exponents describ
anomalous elasticity and transverse undulations, we ca
lated the tubule diameter, the size of the undulations, and
anomalous elasticity within the Flory ande5duc2d- expan-
sion theories. We have also studied self-avoidance with
Gaussian variational approximation, which unfortunat
but, we believe incorrectly predicts that self-avoiding inte
action destroys the tubule phase~as it does the crumpled
phase! for d,4. We studied the crumpled-to-tubule trans
tion in mean field theory, and with thee542D expansion.
Finally we developed a scaling theory of the crumpled-
tubule and tubule-to-flat transitions. Ourexact predictions
for the phantom tubules, Eqs.~5.15!, ~5.16!, ~5.38!, and
~5.48!, have beenquantitativelyverified in the recent simu
lations by the authors of Ref.@2#.

The possibility of the existence of a tubule phase interm
diate between the fully disordered crumpled phase
tt.

-
.

.

tt.
n

-
s
w

en
o-

le
e,

e

er-
g
u-
he

a
y
-

-

-
d

fully ordered flat phase is exciting from both basic phys
and potential applications points of view. Recently, mu
attention has focused on utilizing self-assembled microstr
tures for encapsulations for various applications, most no
bly controlled and slow drug delivery@10#. The structural
stability of polymerized membranes is superior to their liqu
membrane analogs. The theoretical discovery of the tub
phase significantly expands the number of possibilities,
also offers the potential tunability~by, e.g., adjusting the
strength of self-avoidance! of the tubule diameter and there
fore the amount of encapsulation and rate of delivery.

The realization of the tubule phase in polymerized me
branes carries even more significance if the claims that
fully crumpled phase in polymerized membranes does
exist are in fact correct, since in this case the tubule phas
the only disordered phase of a polymerized membrane. W
the recent focus on self-assembly, it may be possible in
near future to freeze in intrinsic anisotropy by polymerizi
tilted phase of liquid membranes or cross-linking polyme
Further numerical simulations which include self-avoidan
offer another avenue to investigate our predictions. We h
that our work stimulates further theory, simulations, and
periments in this area.
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